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obtained via this algorithm converges, and a characterization of the point to which the sequence
converges is given. For both the single-parameter and two-parameter estimation problems, it is
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IDENTIFICATION OF IMPULSIVE INTERFERENCE CHANNELS

Serena M. Zabin, Ph.D.
Department of Electrical and Computer Engineering
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In this work, the problem of optimum and near-optimum identification of the parameters of
the Middleton Class A impulsive interference model is considered. In particular, under the
assumption of the availability of a set of independent samples from the Class A envelope distribu-
tion, the problems of basic batch estimation of the Class A parameters, recursive identification of
the parameters, and efficient estimation of the parameters for small sample sizes, are investigated.
Within the context of basic batch estimation, several estimators of the parameters are proposed and
their asymptotic performances explored. From this analysis. estimates based on the method of
moments are seen to be consistent and computationally desirable but highly inefficient, whereas
more efficient likelihood-based estimators are seen to be computationally unwieldy. However, an
estimator that initiates likelihood iteration with the method-of-moments estimates is seen to over-
come these difficulties in its asymptotic performance. Unfortunately, simulation of this third esti-
mator for moderate sample sizes reveals poor performance under these conditions. To overcome
this lack of moderate-sample-size efficiency, a similar estimator that initiates likelihood iteration
with physically motivated (but nonoptimal) estimates is also proposed. Simulation of this latter
estimator for moderate sample sizes indicates that near-optimal performance is obtained by this
technique. Within the context of recursive estimation, a recursive decision-directed estimator for
on-line identification of the parameters of the Class A model is proposed. This estimator is based
on an adaptive, Bayesian classification of each of a sequence of Class A envelope samples as either
an impulsive sample or as a background sample. The performance characteristics of this algorithm
are investigated, and an appropriately modified version is found to yield a global, recursive estima-
tor of the parameters that performs very well for all parameter vectors in the parameter set of

interest. Within the context of efficient estimation for small sample sizes, an algorithm that has the
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potential of providing efficient estimates of the Class A parameters for small sample sizes is pro-
posed. For the single-parameter estimation problem. it is shown ihat the sequence of estimates
obtained via this algorithm converges, and a characterization of the point to which the sequence
converges is given. For both the single~parameter and two-parameter estimation problems, it is
also seen. via an extensive simulation study, that the proposed estimator yields excellent estimates
or tne paaameters for smal!l samnle sizes. It is anticipated that the results of this research will have
widespread impact in the areas of communication, radar, and sonar due to the common occurrence

of impulsive noise channels in these systems.
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1. INTRODUCTION

Communication systems are seldom interfered with by white Gaussian noise alone, yet receiv-
ing systems in general use are those which are optimum for white Gaussian noise. The man-made
electromagnetic environment, and much of the natural one, is basically "impulsive,” i.e.. it has a
highly structured form characterized by significant probabilities of large interference levels. In
addition to the man-made electromagnetic environment, there many other different. common and
widely-used communications and remote-sensing type channels where impulsive noise dominates,
e.g.. extra-low-frequency (ELF) channels, urban radio networks, underwater acoustic channels.
and telephone line channels. This is in contrast to the Gaussian noise processes inherent in transmit-
ting and receiving elements. Since the conventional receivers are effectively linear, the impulsive
character of the interference can drastically degrade the performance of conventional systems. In
fact. it has been well established [1]-[5] that the performance of communications, radar, and sonar
systems operating in impulsive channels can be greatly enhanced if the true statistics of the channel
are known and exploited. Consequently, the problem of identifying impulsive noise channels is an
important one in the development of systems that can approach the performance limits set by such
channels. To do so. one first needs to develop a model for the interference that fits available meas-
urements, is physically meaningful when the nature of the noise sources, their distributions in time
and space, propagation, etc., are taken into account, is directly relatable to the physical mechanisms

giving rise to the interference, and is tractable for signal detection problems.

A physically-meaningful and widely-used model . or impulsive interference that satisfies the
above requirements is the so-called Class A Middleton model [6]-{8]. This model is parametric,
with parameters that can be adjusted to fit a great variety of non-Gaussian noise phenomena arising
in practice. The parametric nature of this model makes it amenable to identification through point
estimation techniques. Furthermore, this model, which features a non-Gaussian impulsive com-
ponent, superimposed on a Gaussian background component, has found wide application in several
problems of practical interest (see, e.g.. [5],[9]). A complete description of Middleton's Class A

noise model, including its derivation, further motivation, and taxonomy, can be found in [5).[6].[8].




This study is devoted to the problem of obtaining global optimal and near-optimal
identification procedures for the Class A interference model. The problem of estimating the param-
eters of the Class A model was first considered by Middleton in [10] and [11]. In these studies,
Middleton outlines three methods for determining the mode} parameters. The first is an empirical
procedure whereby the parameters are obtained graphically from the experimentally determined
distribution function. Expressions for the parameters in terms of the moments of the Class A pro-
bability distribution function are given in the second method. The third procedure requires that
experimental values of the distribution function ard its slope at vanishingly small thresholds be
available The parameters are then determined via two relations involving these measurements.
Other work on the Class A estimation problem includes that of Powell and Wilson [12]. wherein
standard batch estimation techniques are used to estimate the parameters for a restricted range of

parameter values.

We begin this study with an overview of the Class A interference model, which is given in
Chapter 2. In Chapter 3. the problem of basic batch estimation of the Class A parameters from an
independent sequence of Class A samples is considered. In particular, within the context of batch
estimation, our goal is two-fold : (i) to obtain a consistent and asymptotically efficient estimator of
the parameters and, (ii) to obtain a practical estimator of these parameters which performs well for
moderate sample sizes. The problem of recursive identification of the Class A parameters is
addressed in Chapter 4. Our objective here is to obtain a global recursive estimator of the parame-
ters which performs well for all parameter vectors in the parameter set of interest. In Chapter 5.
we develop an efficient estimator of the paramters with good small-sample-size performance glo-

bally. A summary of the research results is given in Chapter 6.
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2. _HE CLASS A INTERFERENCE MODEL

In this study, we will focus our attention on the model defined in [8] as the "strictly canoni-
cal” Class A interference model. An overview of the model will be given in this section. Further

details of this model can be found in [6]-[8].

In Middleton's strictly canonical Class A noise model, the received interference is assumed to

be a process having two independent components :
Z()=Zp(e)+Z5(e)
The first component, Z,, is represented by

Z,(e)=FT U, (t.y)
)

where U; denotes the j-th waveform from an interfering source and y represents a set of random
parameters which describes the waveform scale and structure. It is next assumed that only one
type of waveform. U, is generated, with variations in the individual waveforms accounted for by
appropriate statistical treatment of the parameters in ¥, and the generic waveform U (¢ ) is obtained
explicitly from the underlying physical mechanisms [6]. Under the additional assumption that the
sources emit their waveforms independently according to the Poisson distribution in time, the

first-order characteristic function for Z, is given by (see, e.g.. [7])
F(ig), = expl<a7,(B,6) - A >)

where B, denotes the envelope of U when U is written in envelope and phase form, J, is .he Bessel
function of order zero, and <'> denotes required sta 'stical averages over the random epoch
representing the time at which the typical j-th source emits, Doppler velocities (if any), and the
random signal pararaeters in y. The second ccmponent, Z;, is an additive stationary Gaussian
background process attributable either to receiver noise or to the limit of a high density Poisson
process representing the contributions of unresolvable background sources, or both. Hence, under

the assumption that this background component has zero mear and variance 0'02- its first-order




characteristic function is

—{202/2
F(Gf); =e e,

and the overall characteristic function for the process is then given by
F(id)p,g =F&)pFG).
which can be approximated canonically as follows [7].[8]:
. = s Am —c.2£2/2
F(ig)P«bG:eAz — € '
m!
m=0

where

c,: =m <B°2>/2 + 0'02

2.1

and A is a positive parameter to be defined below. For computational purposes, it is convenient to

consider the normalized variable

Z = X/(<XZ> + <x2>)"

Transforming (2.1) for the normalized variable Z yields the desired probability density function

(pdf):
. - o Am —22/203
pp(z)=e™ ¥ ———— ¢ .
m=o mW2wo,
where
m
— +T
A
2
(o4 A——_— .
T 14T

and where T is a sec..ad paiameter (also to be defined below). The corresponding Class A envelope

pdf is given by

2.2)
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(2.3)
w(z)=
0 z <0

It is the envelope statistics which will be used in the estimation problem addressed here. Note that
this envelope pdf consists of an infinite mixture of weighted Rayleigh densities. Them =0 term is
attributable to the background component of the input interference,! whereas all terms indexed by
m 2 1 are attributable to the impulsive (Poisson) component of the input interference plus an

appropriate contribution from the background component of the interference.

The two basic and traditional parameters of the model are A and I'. Let us consider their

definitions and physical significance:

i) A is the "Overlap Index” or "Nonstructure Index." Specifically,

A AT, (2.4)
where v is the average number of emission events impinging on the receiver per second and f, is
the mean duration of a typical interfering source emission. Note that v is simply the rate of the
Poisson process underlying the impulsive part of the interference. Thus, A is a measure of the
amount oi temporal overlap among the interfering signals. The smaller A is, the fewer the number
of emission "events" and/or their durations so that the (instantaneous) noise properties are dom-
inated by the waveform characteristics of individual events. As A is made larger, the noise
becomes less structured, i.e., the statistics of the instantaneous amplitude approach the Gaussian

distribution (asymptotically as A —co, although A = 10 is considered a large value for A4 ).

INote that o2 =T'/(1 + [) . It follows from the definition of T (given in (2.5)) that o*(I'/(1 + I)) is simply the inten-
sity of the Gaussian component of the input interference. Thus, even though the m = 0 term appears to depend on the Class
A model parameters, via some simple manipulations, it can be seen that the only quantity it actually depends on is the inten-
sity of the Gaussian component of the input interference. Consequently, the m =0 term is entirely attributable to this
backgtound component.




ii) T is called the "Gaussian factor." It is the ratio of the intensity of the independent Gaussian

comporent of the input interference. chz. to the intensity ,, of the non-Gaussian component, i.e.,
2
2 2 % 2
Fra<Z;>/<Zy;> = where Q,,8A <B,">/2. (2.5)
24

By adjusting the parameters A and I, the density in (2.2) can be made to fit a great variety of
non-Gaussian noise densities. In particular, the Class A model is appropriate for interference
caused by intentionally radiated signals (e.g.. as in the crowded HF band) and has also found con-
siderable application in various acoustical (e.g.. sonar) problems. Examples of Class A interference
include (depending on the receiver bandwidth) the emissions of various man-made devices such as
radio frequency dielectric heaters, soldering machines, plastic welders, etc., as well as natural
phenomena such as grinding arctic ice plates. Typical values for the parameters include
(A=10"°T=50) for narrowband interference from ore-crushing machinery and

(A =0.35T =5.0 X 10~*) for power-line emissions.

Although A and T' are the traditional parameters of the Class A model, instead of estimating

A and I, we will consider the problem of estimating A and X . where
KAAT , (2.6)
i.e..
K =20/<B}>.
This reparametrization proves useful since it increases the analytical tractability of the estimation

problem. Finally. throughout this study. where specific values of A and X are considered. we will

restrict our attention to the parameter set
Ad{A4.5) €r?: 107°<A €1 and 107°<k €107

since this is the range of usual practical interest for these parameters (see, e.g.. [9].[10].)




3. BASIC BATCH ESTIMATION

3.1. Introduction

In this chapter, we will consider the problem of basic batch estimation of the Class A parame-
ters from an independent sequence of Class A envelope samples. Within the context of batch esti-
mation, our goal is two-fold: (i) the first goal is to provide an asymptotically optimal estimator of
the parameters of Middleton's strictly canonical Class A noise model; and (ii) the second goal is to

provide a practical estimator for these parameters that performs well for moderate sample sizes.

The starting point in this study is an estimator proposed in [10] based on the method of
moments, in which parameter estimates are chosen to make population moments agree with sample
moments. In Section 3.2 we provide an analysis of the asymptotic performance of this estimator.
We show that, although this estimator is strongly consistent, its asymptotic variance for one
parameter can be unacceptably high due to the insensitivity of population moments to this parame-
ter. We then turn, in Section 3.3, to the problem of asymptotically efficient estimation. We first
analyze the estimation potential in the Class A model by considering the inverse of Fisher's infor-
mation matrix for the model in the parameter ranges of practical interest. It is seen from this
analysis that the Class A model can, in fact, afford good estimates of all of its parameters if

efficiency can be achieved.

We then consider two estimators that can achieve efficiency. The first of these is maximum-
likelihood, which proves to be unwieldy due to root multiplicity problems in the likelihood equa-
tion and to poorly behaved gradients. The second estimator is one which corrects these two
difficulties by initiating likelihood search with the method-of-moments estimates considered in Sec-
tion 3.2. Because of the consistency of the moments estimator, this second estimator retains the
efficiency of maximum-likelihood without the associated computational problems. Unfortunately,
simulations show that this estimator does not perform well for moderate sample sizes for most

parameter values of interest due to the extremely low efficiency of the initiating estimator at these




parameter values. Thus, although this estimator is attractive irom a theoretical viewpoint, its use
as a practical estimator is limited. However, as we show in Section 3.4, its basic feature of doing
likelihood iteration to improve an initial estimator can be used to develop a very good practical
estimator. In particular, in Section 3.4 we explore (via simulation) the moderate-sample-size
performance of such an estimator initiated with a physically-based estimator motivated by a pro-
cedure proposed in [10]. Our simulation of this estimator indicates that it achieves practical

efficiency for moderate sample sizes.

Some concluding remarks are contained in Section 3.5.

3.2. A Method-of-Moments Estimator

The method of moments is a simple, intuitively appealing, and computationally expedient
estimation technique introduced by K. Pearson in 1894. The problem of estimating the parameters
of the Class A model via this method has been considered by Middleton in {10],[11]. In this section,
the asymptotic properties of these estimates are analyzed. In particular, it will be shown that the
method of moments yields estimates of the Class A mode! parameters which are strongly consistent
and aymptotically normal. Furthermore, explicit expressions for the asymptotic variances of the
normalized estimates will be obtained and computed for a broad range of parameter values. The

performance of the estimator will then be evaluated on the basis of these computations.
3.2.1. Parameter estimates

Let Z,...Z, be a random sample from the Class A envelope distribution w{(z) with
unknown parameter vector § = (4 .K)T to be estimated. In the sequel, we assume that the obser-
vations Z;,i = 1,...n are independent. The method of moments consists of equating an appropri-
ate number of sample moments to the corresponding moments of the distribution, which are func-
tions of the unknown parameters. By considering as many moments as there are parameters to be
estimated, and solving the resulting equations with respect to the parameters, estimates of the

latter are obtained.




For the Class A envelope distribution, the most promising moments to use in this context are
the fourth and sixth moments. These are the lowest-ordered even moments of interest {the second

moment is constrained to unity), and no odd-ordered moments are obtainable in closed form. Use

of higher-ordered even moments can result in multiple solutions when equating sample and popu-

lation moments. Let u, denote the j-th moment of w(z). Then, (see, e.g., [13]).

- 24
(A +K)?

6A - 184
(A+K)»® (Q+K)?

+2 and pg¢= + 6. (3.1

Hq

-

For A # 0, hence for all 8€A, inversion of (3.1) yields unique expressions for the parameters A

and X in terms of u, and ug. Specifically,

3
=
A= > 8 f1(a 1g) (3.22)
He  3u4
5 "2 *?
and
3
i I
K = - > 4 f2 (124, 126)- (3.2v)
He 3peq He 3pq
6 2 +2 6 2 t2

~

The method-of-moments (MM ) estimators based on these two moments, 8 , = (A, .K, )T, are then

given by
- 3
5
A, = 3 (3.3a2)
6 2
and
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3

(3.3b)

G-
K, =

where m, and mg denote the 4-th order and 6-th order sample moments. respectively, i.e..
s 1 54 - 1 & 56
me== 3 Zfandrmg= — 2 zp

noy= n o=y

Consider (3.2a) and (3.2b). Note that f, and f, are discontinuous only on

3
{(pq. ) €R?: %6— - —;’- + 2 =0}, i.e.. on {(uq, )" €R?: ug = 9u4 — 12}. Using the expressions
. . Mg 3py A .
for and iven in (3.1), we have that -2~ — —~ +2=—."__ _  Hence, if A > 0 and

K > 0, then ug > 9u, — 12 and p4 > 2, where the latter inequality follows from the expression
for u, given in (3.1). Thus, via relations (3.1), the parameter set A maps info the open set
Q8 {(uq )" €ER?:pny > 2 and pg > 9uy — 12} on which f; and f, are defined and continuous.

This fact will be used below.

-~

3.2.2. Asymptotic propertiesof 0,
In this section we consider the asymptotic properties of the estimators of (3.3). These proper-

ties are summarized in the following two results.

Theorem 3.1. (Consistency) : The MM estimator [} » is a strongly consistent estimator of @ for

all § € A.
Proof. Let pg8 (uy. ug)" and 2 & (i 4mg) . Since Z,....Z, are i.i.d. and pg € R? for 6 € A, we

at.
have that m — wg by the Strong Law of Large Numbers (SLLN), which implies that

lim m =g (3.4)

n —tco

on a set w.p.1. Now., A=f,(ug) and A,=f, (). Thus. it follows from continuity of f; on Q
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and (3.4) that lim A, = A on a set w.p.1. Similarly, since X = f2(up) and K, = f,(#) we

n —*co

~ -~ as.
have by continuity of f, on  and (3.4) that lim X, = K on a set w.p.1. Thus, 8, = 9 and the

n —+co

proof of consistency is complete. a

Theorem 3.2. (Asymptotic Normality) : For each § € A, Vn (8, —8) is asymptotically normal

with mean zero and covariance matrix B_e_ t 9 Bif , Where

Varg(Z4) Cove(Z4.Z5)

1o

e

Covg(Z4.Z28) Varg(Z9)

and

afr 91
Oy OMs

By &
af2 9f2
Qs O | [ug

Proof. Let pol (uq ue¥ . m AGRmeg)¥ and X, =(Z,2.Z$)" where Z,....Z, is our sequence of
i.i.d observations. Then {X,}2, is i.i.d. with mean vector kg and covariance matrix *Q . (Expres-

sions for the elements of *Q will be given below. We note here that all are defined and finite for

M:

43
B8 €A) Since my= %Z Z} and mg= Z$5, we have by the multivariate Central Limit

1
v=1 n %

1

Theorem (CLT) (see [14), Thm. 5.1.8) that
(Vi (g —m ) .V (g —meF = N (0. %)

as n —oo. Now, if it can be shown that f; and f, are real-valued functions of ug. defined and con-
tinuously differentiable in a neighborhood w( gy ) of &g and such that the matrix By is nonsingular

in @, then (see [14], Thm. 5.1.9)
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D
Va (1 ()= f1(ee) . Vn (f2(2) = f,(w))F -~ N(0.Bo}¢B]) (3.5)
as n —oo, whence it follows that
[Vr (4, —A).Vn (X, ~K)]T£’N(_Q,B§¢_9_B§_') (3.6)

as n —oo. Note that we are concerned with the validity of (3.5) only for all kg corresponding to

0 € A. Hence. we proceed to verify the above conditions for all ug in the open set Q.

i)  That f, and f; are real-valued functicns on  is clear.

ii) To show that f; and f, are continuously differentiable on Q, it suffices to show that gg— and
4

af;

_&L_"i = 1,2, are continuous on this set. Thus, let us consider the form of these partial deriva-
6

_— Bs _ Be _ 3p4
tives: Letaé—z— 1.B_é.6— T+2. Then.
/1 Al : Jla :
.67:-3“3- +-§- _B- (3-73)
3
g_‘f‘:_—._% % (3.70)
0f2 _ 3« 1 _ a3_3 al
5;74'-2_'?+523' 3? 3|7 (3.7¢)
and
0f2 _ _ a 1|af
- TE I (3.7d)

Note that the partial derivatives are discontinuous only on {ug€RZ2:8=0}. But

3
{EQGRZ:%—-—;‘1+2=0H\Q = ¢ by definition of Q.

iii) To show that By is nonsingular for g € Q. we must show that detBg = O for all such yg.

Now.

—

——
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d/1
Ottq

a/f2
L9 QMg

df2
L9 Opty

_ 0

det Bﬁ = o e

g

Substituting the expressions given for the partial derivatives in (3.7a-d) and simplifying, we have
that

—a’

det Bg = ———
= 12p4

Ly

which is nonzero iff aL9¢O. Thus, By is nonsingular for all wp with us2. But

QCf{ug € R?: py# 2} by definition of Q. Thus, By is nonsingular for all g € Q.

The verification of the conditions is now complete. Consequently, (3.6) holds for all § € A,

for 6 €A. 0

ie.. 8, isasymptotically normal ‘ 9, %—Bg *.9_ Bf

3.2.3. Asymptotic performance of A,, and 12,,

The performance of the normalized MM estimates An /A and 1%,, /K will now be considered.
Expressions for the asymptotic variances of these estimates will be obtained and computed for a
broad range of parameter values in A. Note that the normalizations are necessary in order that a

meaningful comparison of the computed variances be made since the parameters take on widely

varying values. LetC, 4 [X.0] and c, 4o, -1-]. Then, from (3.6), we have that
§ A )4

c.lVa (4, —4).Vn (X, —K)]TB»N(O.ClBg¢gB£C{)

and
C,lVn (4, —A).Vn (X, -K)an(o.czag_tgagcg) .
ie..
n 527-_‘4_ i)’1\r(o,c,13gi,'gza§c{) (3.8a)
and
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K, —-K|»p
n [—Lff__ - N(0, CzB_Q#ngCZT ). (3.8b)
Let €4 and €y denote the asymptotic variances of A,‘ /A and I?,, /K ., respectively. Then,
€4 =C1Bo ¥} BICT (3.92)
and
€x =C2Be%4B{CT . (3.95)

We seek expressions for these variances in terms of the parameters A and X. To this end. we

begin by substituting the corresponding matrices for By, tg .C;.and C;. From (3.9a) we have that

on on on anll
Ok4 QM Varg(Z4) Cove(Z4.Z%)) | Ops Ors A
€A = %— 0
8f2 ofz Covg(Z4.Z8) Varg(Z®) | |8f2 8f2 0
Otea  OMs | |uo Oks  OMs | |uo
(3.10a)
_ 1 {[{dNr 2 e 01 o/1 of I
= |3 sV @0 (21 +2Covg (24,2 )354_ P ol PPl ¥ v EgVar_e_(Z‘S) :
Similarly, (3.9b) yields
on on on
Ote OMe Varg(Z*) Covg(Z*. Z%)| | Qe Ok 0
€x = [0 11(_]
of2 df2 Covg(Z4.2%) Varg(Z2®) | | 3f2 3f2 1
OH4  OH6 | ug 0Ky Omg [[ug | K
(3.10b)
_ 1 l{ar | o 0f2 | 8f ar.
= |13 | yara(z0 + 202z 2| O] 187 lﬁgv@(zw.
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Expressions for the partial derivatives — i = 1,2, bhave been given in (3.7a-d) in terms of

Ok 'G_#s"

#4 and ug. Which in turn can be expressed in terms of A and X via (3.1). Expressions for the

eighth, tenth, and twelfth moments of w (z ) can be obtained in a manner completely analogous to

that used in obtaining g and we. Thus, Varg(Z*), Varg(Z®), and Cova(Z*4, Z%) are readily

expressed in terms of A and K. The final results are stated here:

i;% o= A HEY %(A +K ).

-37{:— Wi —%(A +K ).

%%_ &g=%(‘4 PO 548 (aaky - Scaenn
g_i = —%ﬁA_;i{_): + %(A +K ).

VWQ(Z‘) =20+

Vdfg_(zs) =

1364 (244 —4A2) ;244 (74 +4K)
(A+K)? (A+K)4 (A+K)*

720 [(A6+15A5+6544+90A%+3142+4)
(A+K)®

+(6ASK +60A*K + 15043K +90A2K +6AK)
+(15A4K2+90A3K2+ 10542K2+ 15AK?2)
+ (20A3K3 +60A2K3 +20AK3)

+ (1SA2K*+ 15AK*) +(6AK5+ K%)]

6A 184 2

T Ga+x )P * (A +K)? *6

(3.11a)

(3.11b)

(3.11¢)

(3.11d)

(3.11e)

(3.11f)
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Covg(Z4.25) = — 120 [(AS+1044+2543+1542+4)
- (A+K)S
+ (5A“K +30A3K +35A%K +5AK)
+ (1043K2 + 30A2K? + 10AK?) (3.11g)

+ (1042K3 4+ 104K3) + (5AK*) + K9]

24

6A 184
(A+K)? *2

(A+K)3 * (A +K)? 6

The asymptotic variances €, and €x bave been computed for {(A,K ) € A|logA € {0.—1,—2}
and log X € {—2,—3,~4,—5.—6}} using (3.10a), (3.10b), and (3.11a-g) (see Tables 3.1 and 3.2). In
addition, values for the asymptotic mean-square norm relative error (MSNRE) €,, €, A €, + €4,
are given in Table 3.3. Note that the primary contribution to €, is from €x.In fact, for K << A,
the contribution to €, from €, is negligible and it is for this case that €,  becomes extremely

large. Hence, consider €.

For A fixed, €x(A .K) increases as X decreases and takes on very large values when
K << A. For K fixed. €x(A .X) increases as A increases and again takes on very lirge values
when A > > K. Note specifically that when A =1 the asymptotic variance € x becomes extremely

large. These observations are easily explained when one considers the form of u, and ug (see (3.1)).

Table 3.1. ASYMPTOTIC VARIANCE OF A, /4 (€,)
K 1072 1073 10~ 1073 1076
A
1072 2.550337x10° | 2.468429x10° | 2.460431x10° | 2.459633x103 | 2.459554x10°
1071 1.472224x10° 1.448790x103 1.446479x103 1.446248x103 1.446225%x10°
1 4.792669x10% | 4.750635x10% | 4.746463x10° | 4.746046%10° | 4.746005x103
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Tabie 3.2. ASYMPTOTIC VARIANCE OF X, /X (€x)
l
x | 102 1073 10~ 10-3 1076
A
102 6.663680x10% | 5.264450x10* | 5.963216x106 | 6.041263x10% | 6.049149x10°
10! 2.449795%x10* | 2.951534x10% | 3.005101x10% | 3.010491x10'° | 3.011030x10%?
1 1.073910x107 | 1.083890x10% | 1.084889x10!! | 1.084989%x103 | 1.084999x1015
Table 3.3. ASYMPTOTIC MSNRE FOR MM ESTIMATOR ( €, )
K 1072 1073 10~ 1075 1076
A
102 3.216705%10% | 5.511293%10% | 5.965677x106 | 6.041288x10% | 6.049150x10°
107! 2.597017x10* | 2.952983x10% | 3.005115x10% | 3.010491x10%° | 3.011030x10!2

1.074389x107

1.083895x10°

1.084889x10%!

1.084989x10%3

1.084999x10!3




18

Note that u, and ug depend inversely on powers of (A +K ), and K appears only in this way.
Thus, when K < < A, u4 and yq are insensitive to changes in X'. This is evident in Tables 3.4 and
3.5. For A fixed, it becomes increasingly difficult to resolve w4 [u¢] as X decreases, particularly for
K << A, hence the increasing values for €x. The second observation stated above is accounted
for by the fact that, for K fixed, increasing A makes K relatively small in comparison to 4,
which in turn makes the moments and the ectimator less sensitive to X. For 4 =1, u, [y are
nearly the same for all X, since X << A for all values of X under consideration. In fact, x4 1)
for X =1075 equals u4 [ug] for X =107 up to five significant digits. Thus, in order that a reason-
able estimate of X be obtained, the number of samples used must be large enough so that a resolu-
tion of the moments up to five decimal places is achieved. (It should be noted that this insensi-
tivity of the moments to changes in the value of X when K << A is also evident in the higher-

ordered moments.)

Consider the worst—case error for €,, which occurs for A=1, K=10"%. A comparison of
Tables 3.2 and 3.3 indicates that this quantity is essentially the asymptotic variance €x. Given
that 4 = 1, K = 1079, suppose we want the probability that (4, /A , K, /K ) lies within a circle of

radius 0.1 with center at (1,1) to be 0.9. Let

|-
o

ca . (3.12)

01
K
Since. from (3.6). we have that

r
ﬁ{ﬁ'?—f.l 2 N(Q.CBy}e BICT),

-

A, —A

Jn =

a straightforward calculation shows that

A s
(4, —4) +(K,. K

YE = £ n(0.1)2}~09
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Table 3.4. FOURTH-ORDER POPULATION MOMENT (x,)
1072 1073 10~ 1073 107
A
—
102 5.200000x10! | 1.672893x10% | 1.980592x10% | 2.016006x10% | 2.019600x10?
107! 1.852893x10! | 2.160592x10! | 2.196006x10! | 2.199600x10! | 2.199960x10*
1 3.960592 3.996006 3.999600 3.999960 3.999996
Table 3.5. SIXTH-ORDER POPULATION MOMENT (u¢)
K 1072 1073 10~ 1075 1076
A
1072 7.9560000x103 | 4.6572491x10* | 6.0005942x10* | 6.1622765x104 | 6.1787644x10*
107! 6.0554921x10% | 7.6480738x10% | 7.8384413x10% | 7.8578404x10% | 7.8597840x10?
1 2.9468870x10! | 2.9946090x10! | 2.9994601x10! | 2.9999460x10! | 2.9999946x10}
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requires n (0.1)% to be approximately 2.94 X103, or n to be approximately 2.94 x10*?. This is an
unrealistically large sample size for most applications and thus reveals the moments estimator to be
highly inefficient in this sense. The potential poor performance of the moments estimator has been
verified via simulation for a wide range of parameter values.! Whether this inefficiency is inherent
in the Class A model or is a property of the method-of~-moments estimator will be determined in

Section 3.3.

3.3. Asymptotically Efficient Estimation

We have seen in the previous section that the method of moments yields a strongly consistent
and asymptotically normal estimator of the parameters of the Class A model. However, the MM
estimator has a serious shortcoming. Specifically, for values of X < < A, the asymptotic MSNRE
is astoundingly large. This is due to the fact that the MM estimator is highly insensitive to
changes in the parameter X when X < < A. A natural question that arises is whether this insensi-
tivity is a property of the MM estimator or is an inherent feature of the Class A model, i.e., is it
possible to improve on the performance of the MM estimator? To answer this question, let us

examine the Cramer-Rao Lower Bound (CRLB).
3.3.1. The Cramer-Rac Lower Bound

We begin with the following assertion. Let 0,= (A, K.) denote an estimator of
8 =(A K) based on n ii.d. observations. Under regularity conditions on the class of estimators

8 under consideration [15], it may be asserted that if , is asymptotically normal with mean

vector 8 and covariance matrix n"‘# é_ . then the condition
clfs-U(1tIcT 20 (3.13)

must hold. where C is the nonsingular, symmetric matrix defined in (3.12) and 7(8) denotes

Fisher's information matrix:

'This inefficiency is also corroborated for a restricted range of parameter values by experimental results presented
in [12).




2
[% logw(Z)] [-a—%- log w(Z)
I(8)=Egy|
43 3
IEEI"W(Z) 3% log w(Z) 3K

It follows from (3.13) that

riclts -1 McTI2 0

3

0K

logw(Z)]

2
8 logw(Z)]

which, in turn, yields the following lower bound on the asymptotic MSNRE of 8 ::

trl{c2ielzer[C2IC(O].
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. (3.14)

(3.15)

Now, if 0. is an asymptotically efficient (AE) estimator of 8, then #é ={7(8)] and (3.15)

holds with equality. Thus. let € , denote the asymptotic MSNRE for an AE estimator. Then,

€ =er(C2{rCed11]

(3.16)

We will now consider the contribution to E; due to estimating each parameter in the two-

parameter estimation scheme. Let € ,’, denote the asymptotic relative variance due to estimating A

via an AE estimator and let €x denote the corresponding quantity for the parameter X. Since

3o =1[7(8)]! for an AE estimator, it follows that

€a =vi(C?3) VI = vilc2r(! 1v]

]

and

€x = V2 (C?3) V] = v, [C2 1 (8N ]1V]

it

where V; 4 [1.0}and V, 4 [0.,1]. Thus, (3.17a) and (3.17b) imply that

€4 =[1(9)]5! /A2

and

€x =[1(0)]7 /K2

where [7 (8 )]} denotes the jj-th element of the inverse of the matrix 7(8).

(3.172)

(3.17v)

(3.18a)

(3.18b)
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Examining the theoretical lower bounds on the asymptotic MSNRE and asymptotic relative
variances as given by (3.16) and (3.18a,b). we can determine whether an improvement in perform-
ance over the method-of-moments estimator is possible. Moreover, the degree of improvement pos-
sible can be ascertained by a comparison of €4 and E,; ,E€Ex and 6;{, €, and G,’. The quantities
€4.€r. and €, have been computed and tabulated for {(A.K) € A|logA € {0,—1,-2} and

log X € {—2,—3,—4,—5,—6}} (see Tables 3.6 - 3.8). A discussion of the results follows.

We note by a comparison of €, and €4 (Tables 3.1 and 3.6), €x and €5 (Tables 3.2, 3.7),
and €, and 6; (Tables 3.3, 3.8) that the values for the asymptotic variances and asymptotic
MSNRE dictated by an AE estimator are significantly lower than the corresponding values for the
MM estimator for all parameter pairs under consideration. Moreover, whereas for the MM esti-
mator, the primary contribution to €, is from €y, for the AE estimator, neither €, nor € x dom-
inates.

Consider the asymptotic MSNRE. Since €, €,. the moments estimator is not only
inefficient in the sense described in Section 3.2.3, but it is not asymptotically efficient. Moreover,
the apparent improvement in performance yielded by an AE estimator is tremendous, particularly

for values of X << A, i.e., in the region where the MM estimator is most inefficient. Note also

Table 3.6. ASYMPTOTIC RELATIVE VARIANCE DUE TO
ESTIMATING A VIA AN AE ESTIMATOR (€,)

X 1072 1073 10— 10™3 1076
A
1072 6.2440x10! | 5.1972x10! | 5.0865x10! | 5.0735%x10! | 5.0720x10!
1071 6.7196 5.7920 5.6860 5.6732 5.6716
1 1.5909 1.3509 1.3224 1.3188 1.3184




Table 3.7. ASYMPTOTIC RELATIVE VARIANCE DUE TO
ESTIMATING X VIA AN AE ESTIMATOR (€y)
K 10~2 1073 10~ 10-5 10~¢
4 _
102 6.2945x10! | 5.2961x10! | 5.1869%x10! | 5.1744x10! | 5.1730x10!
107! 7.5054 6.8492 6.7839 6.7773 6.7767
1 4.8083 4.2365 4.0854 4.0470 4.0385
Table 3.8. ASYMPTOTIC MSNRE FOR AN AE ESTIMATOR (€.)
). 102 103 10~ 105 10-%
A
=7=m m
102 1.2539%102 | 1.0493x10%2 { 1.0273x10% | 1.0248x10% | 1.0245%10?
10-1 1.4225x10' | 1.2641x10' | 1.2470x10! | 1.2451x10! | 1.2448%10!
1 6.3991 5.5874 5.4078 5.3658 5.3569
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that the maximum and minimum values for €, are 1.0850 x 105 and 3.2167 x 103, respectively, as
opposed to a maximum and minimum value of 1.2539 x 10%? and 5.3569, respectively, for 6;.
Furthermore, €, achieves its maximum value at the same point at which E; achieves its minimum
value, namely at A =1, K= 107% In fact, the improvement at this point is on the order of 103,

Thus, there is a dramatic improvement in performance in the area where it is most needed.

3.3.2. Likelihood-based estimators

The question posed at the beginning of the section has now been answered. In particular, the
high insensitivity of the MM estimator to changes in the parameter X is a feature of the estimator.
It is not a feature of the model. Moreover, we can expect a significant improvement in performance
given that an asymptotically efficient estimator can be found. Naturally. the search for such an

estimator begins with maximum likelihood.

Unfortunately, maximum-likelihood estimation for the Class A model turns out to be
unwieldy. Numerical experimentation with the likelihood equation (LE) reveals that the LE can-
not be readily solved for the maximum-likelihood estimator. In particular, the likelihood function
has steep gradients, the LE has multiple roots for finite sample sizes, etc. Moreover, closer exami-
nation of the LE in the context of estimating a single parameter (fixing X and considering the prob-
lem of estimating A only) reveals that the LE does not have a unique root asymptotically for all
(A.XK) € A For example, for (A.X)=(10"210"%), the LE has roots at A =102 and at
A =0.308312 asymptotically. This multiplicity of roots implies the existence of inconsistent
sequences of roots to the LE when the problem of estimating A only with X known is considered

and a similar phenomenon may be the source of difficulty in the two-parameter situation.

Thus. we have a consistent estimator (the MM estimator) which is highly inefficient and we
have a potentially efficient estimator which is computationally difficult (and possibly inconsistent).
However, the consistency of the moments estimator can be combined with the potential efficiency
of likelihood-based estimation to yield a consistent and asymptotically efficient estimator of the

parameters of the Class A model. This is done via a standard procedure [14] whereby Newton's
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root-finding method on the LE is initiated with a Jn —consistent estimator and, in so doing, both
the consistency of the consistent estimator and the efficiency of likelihood-based estimation are
retained. A natural initial estimator to use in such a scheme for the Class A estimation problem is
the MM estimator, which was shown to be consistent in Section 3.2.2. That the MM estimator is,
in fact. v -consistent follows from its asymptotic normality. Thus, provided certain regularity
conditions are satisfied by the densities w (see [14]), Newton iteration on the LE initiated with the

MM estimate will be consistent and efficient.

As a practical matter, this type of estimator will work only if the initial estimate (the MM
estimate) is reasonably close to the consistent root of the LE. Unfortunately, simulation studies
using several thousand samples indicate that this closeness is not achieved for most values of A
and K of interest. In fact, the MM estimator frequently produces invalid (e.g., negative) initial
estimates for these sample sizes. Thus, even though this procedure performs well asymptotically,
there are limitations as to how well it can perform for a moderate number of samples, the source of

this poor performance being the high inefficiency of the moments estimator.

However, as we shall see in the following section, by starting with an initial estimator with
enhanced efficiency and iterating around it until Newton’s method converges, we can obtain a better
estimator. Hence, we turn now to an estimator which, despite the fact that it lacks the asymptotic
optimality properties of the Moment /Likelihood procedure described above, appears to be much

more efficient than this procedure for moderate sample sizes.

3.4. Threshold-Comparison/Likelihood Estimator

In this section, we consider a practical estimator based on the idea of using likelihood iteration
initiated with a physically motivated, but nonoptimal, estimator. In particular, we consider a pro-
cedure which uses as its initial estimator a scheme motivated by Middleton's approximate empirical
procedure. This latter estimator. described in [10],[11], is a graphical procedure based on features
of the finite sample size distribution. The threshold comparison estimates are m..:iated in the fol-

lowing way: Note that we can decompose the Class A envelope pdf w (2.3) into two components.
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The first of these corresponds to the m = 0O term and is attributable to the Gaussian background
noise component; the second corresponds to all terms indexed by m 2 1 and is attributable pri-
marily to the impulsive noise component. As it happens, these two terms can be clearly dis-
tinguished for most A and K values of practical interest if we consider the envelope distribution
function P(Z > z,). Typical envelope distributions are shown in Figs. 3.1 and 3.2. We note
from the form of this function that it divides the z, -axis into three regions: the first corresponds to
smaller values of z,, in which the Gaussian background noise component dominates; the second
corresponds to larger values of z,, wherein the impulsive noise component dominates; and the third
corresponds to intermediate values of z,. for which P(Z > z,) is virtually constant. The portion
of the distribution corresponding to these intermediate values of z, will be termed the "null
region." We note that for values of A 2 10! and I' € 1073, the departure from the straight-line,
Gaussian (actually, Rayleigh, since the envelope distribution is being considered) portion of the dis-
tribution is abrupt and extensive. In this case, the null region is clearly identifiable. Thus., we can
set a threshold o* at any value of the abscissa (z, ) corresponding to a point in this null region (see
Fig. 3.1) so that, with high probability, samples falling below o* can be attributed to the Gaussian
background component and samples exceeding o* can be attributed to the impulsive component.
For values of A < 107! or T > 1073, the departure from the straight-line, Rayleigh portion is
gradual and/or less extensive, in which case such an o* can be chosen to be the abscissa value (z, )
at which the distribution begins to depart, observably, from its straight-line (Rayleigh) behavior

(see Fig. 3.2).

The above feature of the envelope distribution can be used to obtain estimates of the parame-
ters A and X. In particular, from an i.i.d. sequence, Z, .... Z, , of Class A envelope samples. we
can determine an estimate of the threshold o* from the sample distribution function. We then
divide the observations Z,.....Z, into aset {Z,.Z;.....Z, } consisting of those lying above o*
and aset {Z,.Z,....Z,,} consisting of those falling below o*. Since A is approximately the

expected fraction of impulses in 2 random sample, it can be estimated as
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Fig. 3.1.
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) Impulsive Component

A > "Null Region"

Gaussian Component

P(Z>zo)

Typical envelope distribution for A > 10 and T < 10~ Note the
abrupt and extensive departure from the straight-line (Rayleigh) por-
tion of the curve. (The distribution is plotted on linear (for z,) by
0.5 log,, (~log,P) coordinates.)
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Fig. 3.2.
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P(Z>ZQ)
Typical envelope distribution for A < 10~ and ' > 10™. Note the

gradual and brief departure from the straight-line (Rayleigh) portion of
the curve. (The distribution is plotted on linear (for z,) by

0.5 log,, (~log,P) coordinates.)
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A, =n;/n. (3.19)

Similarly. since K is approximately the average energy in a background sample relative to that in

an impulsive sample. it can be estimated as

hp

= L2z,

np ;=)

/( ,.Z, 'z"ﬁ] . (3.20)

ny =

These estimates will be referred to as the threshold comparison estimates of A and XK. Note that
for values of A 2 107! and I € 1073, A, is simply the probability value corresponding to the
point where the sharp rise in the sample distribution begins, and for values of A < 107! or
[ > 1073 A, is simply the value of P where the sample distribution begins to depart, observably,
from its straight-line (Rayleigh) behavior. (The threshold comparison estimator is based on
Middleton’s approximate empirical procedure, which is described in [10].[11]. We find that the
threshold comparison estimator is computationally easier to implement and leads to more accurate

results than the approximate empirical procedure.)

In order to assess the performance of the above estimator, an extensive simulation study was
performed wherein the normalized sample MSNRE (4 n (sample MSNRE)) for the threshold com-
parison estimator was computed for values of A and X throughout their practical ranges. For
each parameter pair, the computation was made using 100 data sets, each containing 3000 observa-
tions randomly generated from the corresponding Class A envelope pdf. The values for the nor-
malized MSNRE are tabulated in Table 3.9. Note that the threshold comparison estimator performs
very well. In particular, from a comparison of Tables 3.3 and 3.9, one can infer that the threshold
comparison estimator performs significantly better than the MM estimator for moderate sample
sizes. Thus, the threshold comparison estimator is a good candidate for use as an initial estimator
in a scheme whereby a solution to the likelihood equation is determined iteratively. The iterative
determination of a solution to the LE after initiating with the threshold comparison estimator will
be referred to as the Threshold - Comparison /Likelihood Estimator. Let us examine the perform-

ance of this estimator.




Table 3.9. NORMALIZED MSNRE FOR THRESHOLD COMPARISON
ESTIMATOR (3000 SAMPLES, 100 RUNS)
102 1073 10~ 103 10~®
A
1072 2.3885x10% | 2.1233x10% | 2.1253x10% | 2.1332x10% | 2.1310x10?
107! 1.0812x10% | 3.7563x10! | 3.3097x10! | 3.2785%10! | 3.2810x10?!
1 7.7198x10% | 7.4617x10% | 8.1020%10% | 8.1468x10% | 8.1504x102
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Table 3.10. NORMALIZED MSNRE FOR THRESHOLD-COMPARISON/LIKELIHOOD

ESTIMATOR (3000 SAMPLES, 100 RUNS)

K 1072 1073 10~ 10-3 10-¢
A
102 1.1841x10% | 9.2304x10' | 8.7421x10! | 8.8302x10! | 8.8320x10!
107! 1.2818x10! | 1.1732x10' | 1.1723x10! | 1.1747x10! | 1.1736x10!
1 6.5348 5.1473 5.3332 5.2676 5.2281

As before, a simulation study was performed wherein the normalized MSNRE for the

Threshold-Comparison/Likelihood estimator was computed for a range of A and KX values.

Again, the computation for each parameter pair was made using 100 data sets, each containing 3000

observations. The results are tabulated in Table 3.10. We noted above that the threshold com-

parison estimator performs very well. However, a comparison of Tables 3.9 and 3.10 reveals that

the Threshold-Comparison/Likelihood estimator performs even better. In particular, for A=1,

there is a reduction in the normalized MSNRE on the order of 102 for all values of X under con-

sideration. Moreover, a comparison of Tables 3.8 and 3.10 indicates that the normalized MSNRE

for the Threshold-Comparison/Likelihood estimator is very close to the Cramer-Rao Lower Bound

for all values of A and K under consideration.
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In addition to computation of the normalized MSNRE, the relative biases for the threshold

comparison and Threshold-Comparison/Likelihood estimator were computed (3000 samples, 100

runs) (see Tables 3.11, 3.12). Note that, in addition to lowering the MSNRE, the likelihood itera-

tion step also serves as a bias reduction technique for most values of A and K. In particular, a

substantial reduction in the magnitude of the relative bias is observed for A =1 and A =107! for

all values of X under consideration.

Table 3.11. RELATIVE BIAS FOR THRESHOLD COMPARISON
ESTIMATOR (3000 SAMPLES, 100 RUNS)

1072 1073 10— 103 10¢
A
1072 —2.0086x107! | —3.4793x1072 | —9.5308x10~3 | —1.3236x1072 | —1.2456x10~2
107! ~2.3777x10"! | —1.0400%x10™} | —8.8897x1072 | —8.7665%10~2 | —8.7864%x10~2
1 ~7.0614%10' | —6.9930%10™! | ~7.3395x10~! | —=7.3603x10"1 | —7.3620%x107!

Table 3.12. RELATIVE BIAS FOR THRESHOLD-COMPARISON/LIKELIHOOD
ESTIMATOR (3000 SAMPLES, 100 RUNS)

1072 103 10— 103 106
A
1072 —3.9698x1072 | —4.3362X1072 | ~—4.1480X10~2 | —4.0226X1072 | —4.0494x1072
107! 7.7754%x1073 8.0087x1073 8.1027x1073 8.0989%1073 7.9131x1073
1 1.1470x1073 2.0072x1073 1.4641x1073 1.4592x1073 1.1912x1073

In summary of the above, the Threshold-Comparison/Likelihood estimator has many desir-

able features: (i) it performs very well from a practical viewpoint (substantiaily better than

MM -based estimators); (ii) the normalized MSNRE for the estimator is very close to the CRLB;
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and (iii) it serves as a bias reduction technique. Unfortunately, the Threshold-
Comparison/Likelihood estimator apparently lacks the asymptotic optimality properties of the
Moment/Likelihood procedure. In fact, it appears from examination of the properties of the popu-
lation distribution function that this estimator is asymptotically biased and inconsistent. However,
as we have seen. it works quite well for moderate sample sizes, and thus is an attractive estimator

for use in applications.

3.5. Conclusions

In this chapter, we have proposed and investigated several batch estimators for the parameters
of the Middleton Class A noise model in its strictly canonical form. These estimators include the
method-of-moments estimator, which is computationally attractive but is unattractive in terms of
performance; likelihood-based estimators, which are potentially efficient but which have undesir-
able computational properties; and the Moment/Likelihood estimator which, in its asymptotic
performance, combines the desirable features of these two approaches. In response to the poor
moderate-sample-size performance of the Moment/Likelihood estimator observed via simulation, a
similar estimator that initiates likelihood iteration with the threshold comparison estimator has
also been considered. Analysis of the moderate-sample-size performance of this scheme shows it to

. . . . . 3
be an effective estimator for practical use (i.e., sample sizes on the order of 107).
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4. RECURSIVE IDENITIFCATION

4.1. Introduction

In Chapter 3. we addressed the problem of basic batch estimation of the Class A parameters.
In this chapter, we will develop a recursive algorithm for on-line identification of these parameters.
In particular, our objective is to provide a global recursive estimator of the parameters of the Class
A model which performs well for all parameter vectors in the parameter set of interest. We begin
by proposing a basic, physically-motivated, decision-directed algorithm. This decision-directed
scheme is based on an adaptive Bayesian classification of each Class A envelope sample as being
either impulsive or background. As each sample is so classified, recursive updates of the estimates
of the following three quantities are obtained: the second moment of the impulsive component of
the interference envelope density, the second moment of the background component of the interfer-
ence envelope density, and the probability with which the impulsive component occurs. From these
estimates, estimates of the parameters of the model are readily obtained, since closed-form expres-
sions for the parameters exist in terms of these three quantities. Examination of the performance
of the proposed estimator via simulation reveals two major shortcomings of the scheme, which
adversely affect its performance even in a local setting. However, by appropriately modifying the
basic algorithm and imposing the necessary restrictions on the form of one of its initiation vectors,
a global recursive estimator of the parameters of the Class A model with excellent performance

characteristics can be obtained.

The chapter is organized as follows. In Section 4.2, the basic decision-directed algorithm is
developed and its performance examined. Via a probability-of-error analysis, it is seen that the
degradation in the performance of the algorithm arising from its two basic shortcomings can be
alleviated if the necessary restrictions are imposed and the appropriate modifications are incor-
porated. Consequently, in Section 4.3, an initiation procedure for each parameter which yields ini-
tial estimates of that parameter satisfying the necessary restrictions is presented. Upon using the

estimates obtained from these procedures as initial estimates of the parameters, a modified version
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of the basic aigorithm is then proposed which incorporates the modifications suggested vy the two
flaws of the algorithm and some additional modifications which are deemed necessary for improv-
ing its performance in a global framework. In Section 4.4, the moderate-sample-size performance
of the modified algorithm is explored extensively via simulation. From these simulations. it is seen
that the proposed global decision-directed scheme does, in fact. provide a global estimator of the
parameters that performs very well for all parameter vectors in the parameter set of interest. Some

concluding remarks are contained in Section 4.5.

4.2. A Basic Decision-Directed (BDD) Algorithm

The problem of recursive estimation of the Class A parameters from an independent sequence
of Class A envelope samples will now be considered. The procedure which will be proposed in this
section is a recursive version of the Threshold-Comparison estimator, which was seen in Section 3.4
to provide good estimates of the parameters. The objective in the batch scheme and its recursive
version is optimally to discriminate between background and impulsive samples, the optimality
criterion being minimization of the probability of an incorrect classification. Given that the sam-
ples can be so classified, accurate estimates of the parameters can then be obtained. Of course, the
optimum decision statistic in this case is given by the likelihood ratio test (LRT). Fortunately, as
will be seen later. for each parameter vector in the parameter set of interest, the likelihood ratio
(LR) is strictly monotone increasing in the envelope sample. Thus, to each parameter vector in the
parameter set of interest, we can associate a unique threshold so that, for a given observation, the
LRT is equivalent to comparing that observation to this optimum threshold. The problem of
optimum discrimination of the samples has then been transformed to the problem of locating the
optimum threshold corresponding to the true parameter vector. This is what the proposed algo-

rithm attempts to do.
4.2.1. Formulation of the algorithm

The proposed recursive scheme is a basic decision-directed (BDD) algorithm based on an adap-

tive Bayesian classification of each of a sequence of independent Class A envelope samples as
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background or impulsive. The mathematical formulation for the algorithm is given as follows:

Let w,, denote the unnormalized Class A envelope pdf, i.e.,

¥4

o

2

w, = . g > 0.

un w

+
a

The parameter o, the second moment of the interference envelope, was assumed to be unity in the
previously considered batch estimation problem. since, in a batch setting, the data can be easily
normalized to have unit second moment. As stated in Section 3.4, we can decompose the Class A
envelope pdf w,, into two components. The first of these corresponds to the m = 0 term and the

second corresponds to all terms indexed by m 2 1, i.e.,

_ b A" ~z%0% 2
2¢74 2 ze »
_ 2z  -z¥o%e? _ s m!o
w,(z)=e™ > zez “l+@=-e™) - > m_A . 220
oo, c’(1—-e™)
(4.1)
=(-m)p(z)+m p,(2)
where
-A
m A 1—e™ (4.2a)
2z —32/0202
po(z) & ——e °. (4.2v)
and
-A o m 2,22
2e A -z'loto
2(2)8 —— X sze : (4.2¢)
oy oy mio,

In the sequel, p, will be referred to as "the background component of w,, " and p, as "the impulsive
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component of w,, "! Thus, Class A envelope samples attributable to p, will be referred to as "back-
ground samples” and those attributable to p, will be referred to as "impulsive samples." Let 0';
denote the second moment of w,, conditioned on the event that p, occurred, and let 0',2 denote the

second moment of w_, conditioned on the event that p, occurred, i.e..
2 ® 2 2 ® 2
0'3=f0 z°p(z)dz and 0',=j; z°p(z)dz . (4.3)

From (4.2a)-(4.2¢) and (4.3). we then have that

m=1—c, (4.4a)
7. 4
al=o" . (4.4b)
A+K
and

) A +m X

ol=0| ——| . (4.4¢)
m(A +K)

These equations can be readily inverted to yield unique, closed-form expressions for the parameters

of the Class A model in terms of m,, o'g ., and 0'12 . Specifically,

A=—=In(l~-m) . (4.52)
o
K = —ln(l—‘rrl)] 5 = (4.5p)
mOo; —TOp
and
?=1-n)o} +moa} (4.5¢)

forall (A.X.0?) €A, whereA 4{(4.X.0%):(A.k) € Aand o® > O).

That P, can justifiably be referred to as the "background component of w” follows from the discussion given in
Chapter 2. Furthermore, since p, is primarily attributable to the impulsive component of the input noise and, since the vari-
ance of p, is significantly larger than that of p, for parameter vectors in the parameter set of interest, p, can also justifiably
be referred to as "the impulsive component of w.” Again, this terminology is consistent with that given, e.g., in [16].
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Given that we can distinguish between envelope samples attributable to the background com-
ponent of w,, and those corresponding to the impulsive component, then, based on the definitions
of 0'3 . cr,2 . and 7r;, we can use as estimates of these quantities the sample second moment of those
samples classified as background, the sample second moment of those samples classified as impul-
sive, and the frequency with which the impulsive samples occur, respectively. From these esti-
mates, we can then obtain estimates of A, K, and o using the relations given in (4.5a)-(4.5¢).
Since the classification of each sample as "impulsive” or "background” can be performed using a
likelihood ratio test based on that sample and on the estimate of (A, X, o) obtained at the previ-
ous iteration of the algorithm, we are now in a position to propose the following decision-directed
recursive scheme for estimating the parameters of the Class A model, wherein an adaptive Bayesian

classification of each sample as impulsive or background is performed :

Basic Decision-Directed (BDD) Algorithm

Step 1 : Choose the initiation vectors. Choose (r;(0). &; (0). w’}&,’ (0)) arbitrarily and
(A, K, &2) € A". (A tilde above a given quantity denotes the estimate of that quantity for the
iteration shown after that estimate either parenthetically, when estimates of ,, 0'3. or 1710',2 are
being considered, or as a subscript. when estimates of A, X, or o are being considered. Note thgt
we are considering estimates of 11'10'12 instead of 0',2 since 0',2 always appears in conjunction with 7,

in the expressions for the parameters given in (4.52)-(4.5¢).) The initiation vector
(7r,(0). 6'; (0), 7,0 2(0)) is chosen arbitrarily since, as will be seen from the form of the update
equations given in Step 3, the performance of the algorithm is independent of this choice. At the
n-th iteration (n > 1), we have the estimate vectors (#,(n—1), &2(n —1), 1;:5',2 (n—1)) and
(A,_,. K, _,. &7_,) and we observe the n -th sample Z, .

Step 2: Classify Z, as an impulsive sample or as a background sample using a likelihood ratio test

based on the estimate of (A, X, c°) obtained at the (n —1)-st iteration.
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Let

1 if f(Z:A, K, .G )>1

¢, = ~ ~ - .
"o if (24, K, .G )€1

where f is the likelihood ratio function normalized so that the threshold of the LRT has unity

value, i.e.,
) (1—e™)p(z:A.K.0%)
fz:A. K. 0%) A ~ 5 .z >0,
e Po(Z:A.K.O')
232 m A+X (46)
=A™ K Slmax
= _— e"2 " .z >0
_.m! Im+ K
m=1
and where

. = 1 > Z_ isclassified as an impulsive sample,

¢, = 0 > Z_ isclassified as a background sample.

(The functions p, and p,; have been defined in (4.2b) and (4.2¢). respectively. Here the dependence
of these functions on the parameters is made explicit.) In the sequel, the function f will be

referred to as the normalized likelihood ratio (NLR) function.

Step 3 : Update recursively the estimates of 7,, a';. and 7r10',2 . (These three parameters will be

referred to as the update parameters.) : Forn 2 1, let

m(n)=m(n—-1)+ l(qbn-—‘ﬁ'l(n-l)) . (4.7a)
n
(1-¢,) .
G3(n —1)+ ———— (2, = G5(n —1)) if T(1—¢,)=0
T(1-¢,) =t
&:(n)= ro1 (4.70)
&2(n—-1) if T(1-¢,)=0
1=1
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and

Pt P 1 P
moin)=moin-1)+—~(¢, 2 —mai(n~1)) . (4.7¢)
n

Note that at the first iteration of the algorithm (n = 1), execution of this step results in cancellation
of the terms involving the initial estimate of 7, in (4.7a) and those involving the initial estimate of
'rrlcr,z in (4.7¢c). Furthermore, at the first iteration n’ of the algorithm for which a given sample is
classified as a background sample, the first portion of (4.7b) becomes effective and execution of this
step results in cancellation of the terms involving the initial estimate of a'l,? in this portion of
(4.7b). Since, as will be seen in the next step of the algorithm, the classificiation of each sample as

background or impulsive depends only on the value of the initiation vector (4 o K. 5': ) when
. . ~ ~2, , ~ 2
n < n', it follows that for a given sample sequence the values of 7,(1), &z(n’), and 7,0, (1) are

. ~ ~2 ~ 2 .
unaffected by the choice of (7,(0), 35(0), 7w,0;(0)). Moreover, the estimate of each update
parameter obtained at a given iteration depends on the estimate of that parameter obtained at the

. . . . tatags Py o ~2
previous iteration only. Consequently, for a given sample sequence, initiation vector (A, K, 7).
. ~ ~2 i .
and fixed value of n 2 n’, the estimate vector (77,(n ). Gz(n ). 1,07(n)) will have the same value

independent of the choice of the initiation vector (i7,(0), &5(0), m,0:2(0)). Thus, as claimed in
Step 1, the performance of the algorithm is unaffected by the choice of the initial estimates of
5. 0'3. and wlolz.

Note, in addition, that the estimates of the update parameters given by recursions (4.7a)-
(4.7c) are motivated entirely by their definitions: For n 2 1, 7,(n) as given by (4.7a) is simply
the proportion of samples that have been classified as impulsive by the n-th iteration: for
n2n’, 5': (n) is the sample second moment of those samples that have been classified as back-
ground by the n -th iteration; and lastly, forn 2 1, 11::6',2 (n) is the proportion of those samples
that have been classified as impulsive by the n -th iteration times the sample second moment of

those samples.
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Step 4: Obtain estimates of the parameters of the Class A model. First, let

2 (1-¢,)

=1

Zé

=1

a, 4

and let n* denote the minimum value of n for which «, is nonzero. Then, for n < n*, set
(A,.K,.6)=(A4, LK, &2_). For n 2 n*, obtain estimates of the Class A parameters in
terms of 7, & ;. and 7,0 using the expressions for these parameters given in (4.52)-(4.5¢):
A ==ln(-7()) . (4.82)
5'; (n)

K, =[-1n(1—-,(n))] — : (4.8b)
71,02(n) = 7,(n) G5 (n)

and

-~ 2 -~ -2 -~ 2

o, = =7 (r))e;(rn) + 7o, () . (4.8¢)
(Note that (4.82)-(4.8c) do not yield valid estimates of the parameters for n < n*.)

Step 5 : Constrain (A.,, . I?,, . 5': ) to lie in the parameter set of interest. First, extend the boundary
of A slightly (by a factor of 1.1) in two of its coordinates to obtain the following set A* contain-

ing A"

A A1(A.K.0%):909x107<A 1.1, 9.09x107 <K €1.1x107% ¢?>0

Secondly, let
1A 2 — -3
Bla A,-9.09x107,
B24a11-4,,
3, 2 = -1
B4 K,—9.09x107",
B4 1.1x1072—-K,.
Thirdly, modify (A,,,z?,,.&,f ) as follows to obtain the constrained (to lie in A') estimate

(4,.K,, 6',‘2 ) of (A.K,0o?) for the n-th iteration:
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A, if 818220
Z = 1 — -3 R (49&)
n (1 ~max {sgn B,.0})(9.09x107°) £ 818% <o
+ (1 —max {sgn B2, 0})(1.1) £ Po B
K, if 87820
K, = (1—max{sgn B7,0})(9.09x 107" £ 8% <0 (4.90)
+ (1 —max {sgn B, 0D(1.1x 107%) BaBs
el=5>. (4.9¢)

Now. if (A,.K,.52)=(A,,K,.5>), then execution of this step is complete. However, if
4, .K,. (—J": )= (A.n . I?,, . 5',,2 )., then proceed as follows: Using the inverse relations given in
(4.42)-(4.4¢), modify 7,(n ), &5(n), and 7,07 (n ) at the n -th iteration to reflect the above changes

in the estimates of the Class A parameters. This modified estimate will be denoted by

#F,(n), F2(n). T2 (n)):

F(n)=1—e (4.10a)
2 2 E"
gsln)=7, | —| . (4.10b)
A+K,
and
A—n +ﬁ1(n)1_{;
—2 _
mo;(n)=7, — . (4.10¢)
An+ n
Finally, set ((n). &2n), mo(n)) = (F(n). F5(n). 70/(n)) and
A,.K,.¢H=A,.K,.&D.

The steps of the basic decision-directed algorithm are now complete. From a graphical stand-
point, this is what the BDD algorithm attempts to do: Let (4., X, o) denote a parameter vector in

A’ with corresponding envelope pdf w,, as shown in Fig. 4.1. Now. for each (A, X, e e,
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4 &
75,,(, *7* (Optimum Threshold)

Fig. 4.1. Envelope pdf for typical parameter vector (A.K,o”)in A’ .
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fiz:A. K ,gz) as defined in (4.6) is a strictly increasing continuous function of z, with

limf (z;A,.K.0?) <1 and lim f(z:A.K.a») =co. Thus, for each (A.K.c%) € A', there

z -0 z = oo
exists a unique 'ro( 2 € (0. o) for which f (Topt —"f); A, K.c% =1. It then follows that for
each(A.X.o *) € A', the corresponding likelihood ratio test for a given observation is equivalent

2
to comparing the given observation to the optimum threshold 'ro(ﬁ E.29 je., the decision regions

which minimize the probability of error in the classification process for each (A, X ) € A’ con-
2
sist of the intervals (O, TOP‘ -2h ). (To(;: ), ). (If the observation lies in (0, TOP‘ Ko itis
K, a?

classified as a background sample, whereas if the observation lies in (1' %) o), it is classified

opt
. . 2y .. . .
as an impulse.) Consequently, since (A, K., 0") lies in A", we can associate with the parameter

o(:: K.oh in the manner just described. Similarly, since

vector (A, K, o) the optimum threshold 7
. - 5 ~2 o 4
the sequence of estimate vectors (4,. K, . @, ) of the true parameter vector (4, X, o°) liesin A',

we can associate with this sequence of estimate vectors a corresponding sequence of threshold esti-

(y .X.&H

mates 7,,. © ° . lmplicitly, via this sequence of threshold estimates, the BDD algorithm

2
attempts to locate T‘,(;:'K“’) and. hence, the corresponding optimum decision regions

2
(0. o(;: X.o )] (r o(;:,x,u’) .0). In so doing, it can then, with minimum error probability, discrim-

inate between those samples corresponding to the main lobe of the envelope pdf and those
corresponding to the tail of the pdf (see Fig. 4.1). Given that the background samples (those
corresponding to the main lobe of the envelope pdf) can be optimally discriminated from the
impulsive samples (those corresponding to the tail of the pdf), accurate estimates of the Class A

model parameters can then be obtained.

We see then that the BDD algorithm is physically motivated, easy to implement, and is a
recursive version of a batch procedure which is known to provide good estimates of the parameters.

In the next section, we will examine the performance of this BDD algorithm.




4.2.2. Performance of BDD algorithm

The behavior of the BDD algorithm has been examined for an extensive range of true parame-

ter vectors (A, K, o) € A’ and an equally extensive range of initiation vectors (4 o, K. 5‘3 )eA

for each true parameter vector. A few major difficulties have been observed, these difficulties being

equally apparent when o’=1 and 5',.2 is fixed to have unity value for all n 2 0. Thus. for the

sake of simplicity, we will now cite these difficulties as they pertain to the situation when

&, =0c’=1(n 20). We note that &~ is taken to have unity value since the absolute value of o>

has no bearing on the estimation problem at hand (see Appendix A).

Drawbacks of BDD Algorithm

€]

(ii)

For values of A close to 1072 and arbitrary values of X, the convergence of the BDD algo-
rithm to the true parameter vector is sensitive to the distribution of impulses over values of
n < 0(500). That is, despite the fact that the algorithm may correctly distinguish between
impulsive and background samples in its initial stages, if the percentage of impulses over the
sequence of samples classified correctly exceeds the expected percentage (which, e.g., would be
0.995% for A =102 since, for A=10", 7, =1—e *=9.95x 107>), then, with significant
probability, the algorithm will not converge to the true parameter vector. Furthermore, for
fixed A , the frequency with which the algorithm does not converge to the true parameter vec-
tor due to its sensitivity to the distribution of impulses increases with increasing K . becoming

relatively high for values of X close to 1072,

For values of T,4 K,/A, 2 T, the frequency with which the algorithm converges to the true
parameter vector is relatively high, whereas for values of )y o < T, the frequency with which
the algorithm converges to the wrong parameter vector is relatively high. The former portion
of this statement is not valid for values of A close to 1072, since, as explained in (i), the dis-
tribution of impulses forces the algorithm to converge to the wrong parameter vector for a
significant percentage of the runs when A is close to 1072, Moreover, for values of A close to

1, the frequency with which the algorithm converges to the wrong parameter vector once
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again becomes relatively high for values of I:o ~0(2107"). Thus, even when the set of
vectors from which the initiation vectors are chosen is a small neighborhood of the true
parameter vector, the performance of the BDD algorithm can vary drastically over that neigh-
borhood depending on the location of the initiation vector. This highly nonuniform behavior
of the algorithm even when the initiation vectors lie close to the true parameter vector makes

it undesirable for use even as a local tracking scheme.

A careful and thorough analysis of the source of these two shortcomings of the BDD aigo-
rithm has been made, and is given in Appendix A. We note here that the ensuing adverse effects on
the performance of the algorithm arising from its two basic drawbacks can be eliminated by plac-
ing certain restrictions on the form of its initiation vector and by incorporating the appropriate
modifications into its framework. In particular, the following restrictions (on (A 4 K 7)) and

modifications must be imposed (the derivation of these conditions can be found in Appendix A):

(R1) A, must either provide an accurate estimate of A, or, A, must provide an estimate of A

for which A 0< A and not less by an order of magnitude or more.

(R2) K, must either provide an accurate estimate of X, or, X, must provide an estimate of X

for which K> K and not greater by two orders of magnitude or more.
~2 . -
(R3) 0, must provide an accurate estimate of o’

(M1) The estimator of & given by (4.8c) must be replaced by an estimator of ¢ consisting of an

. ~2
update equation for o, .

(M2) The estimate of A must be fixed to its initial value A o in the initial stages of the algorithm.

with only the estimates of X and o’ being updated.

In the next section, we will consider a modified BDD algorithm which incorporates

modifications (M1) and (M2) and whose initiation vector satisfies conditions (R1)-(R3).
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4.3. A Global Decision-Directed Algorithm

In this section, we will develop a giobal recursive estimator of the Class A parameters by
appropriately modifying the BDD algorithm. First, we will present an initiation procedure for each
parameter which yields initial estimates of the parameter satisfying the corresponding restriction as
given in (R1)-(R3) of the previous section. Then. we will propose a modified BDD algorithm which
incorporates the changes described under (M1) and (M2) and additional changes which are deemed
necessary either for the sake of simplifying the BDD algorithm at a given step or for the sake of

improving its performance in a global framework.

Initiation Procedure for A

We need to locate an initiation procedure which yields estimates z;o satisfying restriction
(R1). The search for such an estimator can be decomposed into two steps: (i) First, we will locate
a procedure which provides us with a reasonable estimate of A . (ii) Secondly, we will construct a
quantizer whose input is this estimate and whose output is the estimate quantized in the direction
of small A. This quantized estimate will then be used for ;1.0 . By decomposing the search in this
manner, the determination of a procedure which yields initial estimates of A with the desired
property is greatly simplified.

Let us focus our attention on the first step: Which estimator will provide us with a reason-
able estimate of A? One procedure which suggests itself from the batch estimation problem dis-
cussed in the previous chapter is the method of moments. It was seen in Section 3.2 that the MM
estimator based on the fourth and sixth moments was highly inefficient in estimating the parame-
ters of the model. However, this high inefficiency was due to the insensitivity of the moments to
changes in the parameter XK. In fact, the computed asymptotic variances for the normalized MM
estimate of A (given in Table 3.1) suggest that a relative error in the estimate of A on the O (107

can be attained using the MM estimator if a sample size of 10000 is used.” Thus, given the many

2The computed variances were based on the assumption of a fixed envelope second moment. However, they should not
change significantly when the second moment is unknown since, as will be seen in the sequel, the sample second moment is
extremely accurate for 10000 samples.
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desirable features associated with the MM estimator, among which are its recursivity and compu-
tational expediency, we will use the MM estimator based on 10000 samples to obtain a reasonable

estimate of the parameter A .

In some cases, the estimates of A obtained via the method of moments may exceed the true A

by a significant amount. Unfortunately, restriction (R1) does not admit such estimates of A for

A, . Thus. instead of using the MM estimate of 4 for A.o . we will instead use a quantized MM

estimate of A , wherein the MM estimate of A is quantized in the direction of small A.

Let m,,m,. and m¢ denote the second-order, fourth-order, and sixth-order sample moments,
respectively, of a sequence of 10000 independent, unnormalized Class A envelope samples and let

Ay denote the MM estimate of A based on these moments. Then, (see 3.3a),

3

my
- 1]
2(m,)?
Ay = - . (4.11)
mg 3m,
- +2
6(m2)3 2(m2)2

Furthermore, let € , (A, K) denote the asymptotic variance of the normalized MM estimate of A
based on the fourth and sixth moments, the expression for which was derived in Section 3.2.3.

Consider the following simple quantization scheme:

(i) Divide (~o0,0) into the subintervals (—oo,1.1X1072), [4,.4,”%) (1 € j €990). and

(A g0 .o0). where

A, & j10°+107° (4.12a)
and
. M2
€4 (A,.1077)
10000
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(ii) Then, take
1072 if Ay € (=00, 1.1 X 1079)
A= I min A)] =107 ifAy, €[11Xx1072,455)
1€ €9% (4.13)
2. I[A) ,Ajuu)(AMM):l
1 if Appg € [Agog . 0)

where I; denotes the indicator function of the set B.

Note that A jm“ is an upper bound which, in the worst case, is correct approximately 85% of
the time (based on a Gaussian approximation for the distribution of A,,,,: see Section 3.2.2). Thus,
the above quantization scheme achieves the goal of quantizing toward smaller values of A without
undue distortion. This statement is further supported by simulation results wherein the proposed
initiation procedure was in fact seen to yield estimates A , satisfying restriction (R1). (Note that
the quantization scheme must be independent of the parameter X since X is unknown. Now, from
Table 3.1, it is evident that for fixed A and arbitrary K, €,(A.K) is largest for X =10".

Thus, the choice of X = 1072 in (4.12b) yields the most conservative bound.)

Initiation Procedure for K

We need to locate an initiation procedure for K o Which satisfies restriction (R2). Again, we
decompose the search for such a procedure into two steps: First, we will locate an estimator which
yields an estimate of X which differs from X by less than an order of magnitude. Then, we will
multiply this estimate by a factor of 10 and use the resulting value for K o- In so doing, we will

obtain values for K o Which satisfy (R2).

Now, we need an estimator which will approximate X to within an order of magnitude. It
was seen in Section 3.4 that estimators which correctly distinguish between impulsive and back-
ground samples provide good estimates of the Class A parameters. Moreover, it was seen in our
earlier discussion that correct discrimination of the samples involves the determination of the

optimum threshold corresponding to the true parameter vector. Thus, by considering a recursive
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version of the Threshold-Comparison estimator (given in Section 3.4) which utilizes a simple,

heuristic scheme for approximating the threshold, perhaps we can obtain an estimator which yields
estimates of X having the desired property. With this in mind, consider the following initiation

procedure for obtaining X :

Let Z_ 5990 Z g98,+-+1+ ZgeZy, ..., Z3p9 denote a sequence of 3000 independent Class A

envelope samples.
Step 1: Choose (¥(0), 5': (0) , yo2(0) ) arbitrarily and let
Xod max{Z _gp9,..., Zy} .
Yo & miniZ_gq,.... Z,} .
Step 2: For 0 < k € 1999, update the threshold 7, using the following system of equations:

1, = (X, ¥ )

)\(Z,,H— Tk)
Xpnn= X +

[Zk-l»l_ Xk]

k

(ZMZ = 7)l+1
1=0

[I—A(zki‘l_ Tk)]

Yk+l=Yk+ k [Zk+1—Yk] .

(X(1=AMZ,, -]+ 1

1=0

where

1 ifx>0
MxI= 1o i x <0
and
MZ,—7)=1 > Z,,,isclassified as an impulsive sample,

MZyy~=1.)=0 > Z,, isclassified as a background sample.
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Step 3: For 1000 € k& < 1999, update recursively the estimates of y, o, and Y07 :

¥ (k—=999) = y(k—1000) +

(AN(Zyy~ 1) = $(k=1000)] . (4.142)

k—~ 999
~2 k
k ~ 1000) +
Tal ) if 3 (1=A(Z,,,—7))=0
(1-A(Z, 3= 7)) 2 ~2 1=1000
k [Zk+l -O'G(k—IOOO)]
(1=x(Z, = 7))
&2k -999) = ,Em e (4.14b)
k
& (& —1000) if ¥ (1=x(Z,,~7,))=0,
1 =1000

and

Yo (k—999) = yo;(k~1000) +

1 ~ (4.14¢)
k_ggg[x(z,,ﬂ— 7.)Z2; — yo(k—1000)] .
Step 4: Compute K o as follows :
First, let
) &2(1000)
K* =[-1n(1 = 5(1000))]| — — — : (4.15)
yo,(1000) — %(1009) &,(1000)
Then, let
K= =10K* .
Finally, take
1072 if K= > 107
K,={ K= if k»€[10°1077] . (4.16)

107 if k= <10°°
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This initiation procedure attempts to locate the optimum threshold corresponding to the true
parameter vector via the sequence of threshold estimates 7,. Note the simplicity of the scheme
used to approximate this optimum threshold: X, is the average of X and the values of those sam-
ples classified as impulsive by the k -th iteration: Y, is the average of Y, and the values of those
samples classified as background by the k -th iteration: and 7, is simply the geometric mean of
these two quantities. Note, moreover, that (4.14a)-(4.14¢c) are based on the update equations for
the BDD algorithm given in (4.7a2)-(4.7c) and that the relation for K* given in (4.15) is obtained
using relation (4.8b). (The interpretation of the update parameters ¥, 0': , and 'yo',,2 is the same as
that for the parameters m,, 0'3 . and 11'10'12 . respectively.) Now, simulations reveal that for values
of the true parameter vectors for which X &€ 1074, k» approximates X to within an order of
magnitude. However, even though K* is less than KX by less than an order of magnitude for
parameter vectors for which X > 107, XK* sometimes exceeds K by more than an order of magni-
tude for these parameter vectors. But, by multiplying X* by a factor of 10, constraining the
resulting value to lie within the set of allowable values for the parameter X, ~nd using this con-

strained value for K, it is seen that estimates K o Which satisfy restriction (R2) are obtained.

Initiation Procedure for o’

~2 . .
For o,. we wili use the sample second moment of those samples used to obtain A,,,. Let m,

be defined as above. Then, we shall take

Gy =m, . (4.17)
Simulations have shown that the sample second moment based on 10000 samples yields accurate
estimates of the envelope second moment. Thus, estimates 5’02 obtained using (4.17) do. in fact,

satisfy restriction (R3).

The descriptions of the initiation procedures for the parameters are now complete. We will
now determine the changes in the BDD algorithm induced by (M1) and (M2). First. consider (M1).

Since 5‘02 is the sample second moment of a sequence of 10000 Class A envelope samples, the
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estimator of o given by (4.8¢c) will be replaced by the following update equation for this sample

second moment:

1 -
=6+ ———(22=-62)). n21 (4.18)

Now, consider (M2). Let n, denote the last iteration for which the estimate of A is fixed to its
initial value A, . Then, for n < n; , the estimator of A given by (4.8a) must be replaced by the

following estimator:

A = A, . (4.19)
Now, from (4.5a) and (4.5b), note that
2
A Op
K = 2 2

Thus, for n < n, . the following estimator of X can be used:
= ~2
A, og(n)

—-A

. (4.20)

K, =

1= e | &R = &5(n)
where the update equation for 032 is given by (4.7b) and the update equation for 0',2 is given analo-

gously as follows

Gi(n—1) + |=—|[(z2-&/(n-1)) if T ¢ =0
¢ =
&in) = = C421)
§/(n—1) if T¢=0
=1

&,2(0) € R. (If n™ is defined to be the first iteration for which a given sample is classified as impul-
sive, then for n = ™, &2(n) is simply the sample second moment of those samples classified as

impulsive by the n -th iteration.) Note from the estimators of the Class A parameters given in
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(4.18)-(4.20) that only the estimates of the two update parameters o2 and o/ are required when
p p ):§ 1 q
n < n, . Consequently. in lieu of the update parameters 7r1,0'§' , and 'rrlO',2 used previously, the

update parameters 0’ and o’} will be used when n < ng.

We are now in a position to present the following modified BDD algorithm which incorporates

the above modifications and some additional minor modifications.

4.3.1. Modified BDD (MBDD) algorithm

Step 1': Choose the initiation vectors. Choose (&2 (0).&7(0)) arbitrarily and obtain

A N o .
(A,.K,.0,) using the initiation procedures described above.

Step2’: Classify sample as impulsive or background. Since m 21 in (46) and
107 < ¥ €107% it follows that m+ K =m. Using this approximation for (m + K) in (4.6),
classify Z,,n 2 1, as an impulsive sample or as a background sample using the following

simplified test:

Let
1 if Z, >g(A, . K, _,.67.))
¢ll = . < - hyd ~2 ’
0 if Z, \g(An—l'Kn—l'o-n—l)
where
1/2
K A"lll
~ ~ ~2 -2 n ~ n=-1
g(An—l'Kn—l'o-n—-l) a —Ca-1| = ~ ]ln lKn-1 Z ‘ ’

An-—1+Kn—1 M?lm!m

and where
¢, =1 > Z isclassified as an impulsive sample,

¢, = 0 > Z, isclassified as a background sample.
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Step 3" Update recursively the appropriate update parameters.

(a)

(b)

For n < n, . update recursively the estimates of o2 and o using (4.7b) and (4.21), respec-
! B 1 g P

tively.

For n > n, . update recursively the estimates of 7,, 02, and 7,0 using (4.72), (4.7b). and

f - Up A y 1938 19 8

(4.7¢), respectively. Note that these update equations require estimates of ,, 0'52. and 1r10',2
when n =n, . Since o4 is an update parameter when n < ng. 5'; (n; ) is available. Fur-
thermore, using relations (4.4a) and (4.4c). estimates of m, and 7,0 at the n, -th iteration

can be obtained as follows:

Step 4’ : Obtain estimates o f the Class A parameters.

Let a, and n* be defined as in Step 4 of the BDD algorithm.

(a)
(v)

(c)

Forn < n*,obtain & using (4.18) and set (A, . K, )= (A, _, . K, _, ).
If n* < n;, then for n* £ n X n,, obtain estimates for A X, and o using (4.19), (4.20),
and (4.18), respectively.

For n > max(n,.n*—1), obtain estimates for A, X. and o’ using (4.8a). (4.8b), and

(4.18), respectively.

Step 5 : Constrain estimates of Class A parameters to lie in parameter set o f interest.
P p p

Define A* . Bnl . Bf . B: .and B as in Step 5 of the BDD algorithm.

(a)

For n < n, . constrain A K, .and & using (4.9a). (4.9b), and (4.9c). respectively. ( Let

n ’
A,. X, . and 6",,2 denote the constrained estimates. ) If (4,.X,. 6': )=(A,.K,. 5': ). then
execution of this step is complete. However, if (4., K, .T_) = 4,.K,. &2), then proceed as

follows : Using the relations given in (4.4a)-(4.4c), modify 5'3 (n)and 6',2 (n) to reflect the
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change in the estimates of A, K. and o induced by the constraint. ( Let G2(n) and &2 (n)

denote the modified estimates. ) :

z _
F5(n) = &) | —— ]=—: —T]
A, + K, Ay + K,
I+ (1-e)F Ag+ (1=K
_2 _2 n n _2 0 n
all(n) =0, _ =0, -
(1—e™)(A, +K,) (1—e (A, +X,)

Finally, set (52(n).52(n)) =(F3(n).&(n))and (4, .K,.62)=(A4,.K,.5°) .

n

(b) For n > n,, proceed as in Step 5 of the BDD algorithm.

The description of the MBDD algorithm is now complete. Experimentation has shown that
setting n, to 1000 eliminates the difficulties associated with not fixing the estimate of A in the ini-
tial stages of the algorithm, without unduly slowing the convergence of the algorithm. Moreover,
extensive simulation of the MBDD algorithm (with n, = 1000) has shown that convergence of the
algorithm is essentially attained within 5000 iterations (i.e., the relative variation in the estimates
of the parameters from iteration to iteration for iteration values near 5000 is very slight) and that
good estimates of all parameter vectors in the parameter set of interest can generally be obtained
for this iteration value. Occasionally, however, for values of A ~ O (2 107') (X arbitrary), the
estimate of A can be somewhat low. Furthermore, for these values of A and values of
K ~0(2 107", the estimate of K is occasionally high. This problem can be easily remedied by
noting the following: Even though the estimate of A is low and that of KX is high, these estimates
are closer to the true values than those given by A"o and K o- Thus, by restarting the BDD algo-
rithm with an initiation vector consisting of these estimates of A and K, better estimates of the
parameters can be expected. Now, it was noted that the convergence of the MBDD algorithm can be
attained within 5000 iterations. However, even after the 3000-th it. ition, the variation in the
estimates of the parameters is only slight. Thus, the BDD algorithm can equally well be restarted

with the estimates of A, X, and ol obtained at the 3000-th iteration. With this in mind, consider
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the following modification to the MBDD algorithm:

If the estimate of A at the 3000-th iteration exceeds 10", then introduce as a second estimate
of the update parameter w; the proportion of samples classified as impulsive after the 3000-th
iteration. Denote this second estimate by T - At some iteration n , > 3000 (and for all itera-
tions thereafter), obtain the estimate of A using relation (4.5a) and - , as an estimate of m,,
instead of 7,. If, in addition, the estimate of X at the 3000-th iteration exceeds 10, then also
introduce as a second estimate of 0'3 the proportion of samples classified as background after the
3000-th iteration and as a second estimate of 17'10',2 the proportion of samples classified as impulsive

after the 3000-th iteration times the sample second moment of those samples. Denote these esti-
=2 = 2 . . . . .
mates by 0 g and 1,07, respectively. Then, for all iterationsn 2 n , . obtain the estimate of X

using relation (4.5b) and T 1 & ,? ., and 7?0’,2 as estimates of tl.ze corresponding update parameters.
Furthermore, for iteration values greater than 3000 and less than n ,, . obtain the estimates of 4
and X using the original estimates of the update parameters. Also, if the estimate of A at the
3000-th iteration exceeds 10" but that of X does not exceed 10", then for n > N max - CONtinue to

obtain the estimate of X using the original estimates of the update parameters.

The first iteration value » for which the second estimates of the update parameters are

max °*
used to obtain the estimates of the model parameters, is the smallest iteration value which satisfies

the following two conditions:

(i) There must exist iterationsn, and n,, 3000 < n,.n, € n, . such that an is classified as an
impulse and Z,,2 is classified as background since, otherwise, invalid estimates of the Class A
parameters would be obtained.

(ii) N gy must be greater than 3000 plus an offset 3, specified below as a function of the estimate
of A at the 3000-th iteration. For iteration values greaier than 3000 and less than or equal to
3000 + 3, the original estimates of the update parameters are used to obtain the estimates of
the model parameters. Consequently, this experimentally determined offset 8§ is chosen so

that, for iteration values slightly greater than 3000 + 3,
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(a) the accuracy of the estimate of A obtained using 7 1 is. on the average, higher than

that obtained using 7, and,

(b) when the second estimates of the update parameters are used to obtain the estimate of
K, the accuracy of this estimate is, on the average, close to or higher than that

obtained using the original estimates of the update parameters.

Otherwise, it would be more appropriate to continue using the original estimates of the update

parameters in obtaining the estimates of the model parameters.

By implementing the above modification to the MBDD algorithm, what is effectively being
done is the following: At the 3000-th iteration of the MBDD algorithm, the BDD algorithm is
restarted alongside the MBDD algorithm, using as estimates of the model parameters in the initia-
tion vector for the restarted algorithm the estimates of these parameters obtained from the MBDD
algorithm at the 3000-th iteration. Then, at some well-defined iteration after the 3000-th iteration
(and for all iterations thereafter), the estimates of A and X pbtained from the BDD algorithm are
sometimes used instead of those obtained from the MBDD algorithm. The estimates of the parame-
ters obtained from the restarted algorithm are used whenever it is expected that these estimates
will, on the average, and within a moderate sample size, provide better estimates of the parameters

than those offered by the MBDD algorithm.

The proposed modification to the MBDD algorithm should yield an algorithm which provides
a global estimator of the Class A parameters for all parameter vectors in the parameter set of

interest. The steps of this modified MBDD algorithm will now be given.

4.3.2. Global decision-directed algorithm
Step 1" Choose the initiation vectors. Proceed as in Step 1’ of the MBDD algorithm. In addi-

tion. choose 77 (0, & 2(0). and 0 2(0) arbitrarily.
Step 2" Classi fy sample as impulsive or background. Proceed as in Step 2’ of the MBDD algo-

rithm.




Step 3" Update recursively the appropriate update parameters .

Let
1 if Agg > 0.1
b= -
0 if Agge S 0.1
1 if Kape > 107
n= -~
0 if Kapo € 107"
and

500 if 0.1 < A,pg < 0.2
400 if 0.2 € Agpy < 03
§=1{ 300 A
200
100

B R R K
o
W

Furthermore, let n** denote the minimum value of n, n > 3000, for which €, = O, where

e, A( X o) X (1-9). n > 3000 .

1=3001  1=3001
(a) For n € 1000, proceed as in Step 3'(a) of the MBDD algorithm.
(b) For 1000 < n < 3000, proceed as in Step 3'(b) of the MBDD algorithm.

(c) Forn > 3000,

Case (i): u=0.

. . ~ =~2 ~~ 2 .
Continue to recursively update 7,.65. and m,0; using (4.7a). (4.7b), and (4.7¢),

respectively.
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Case (ii): u=1and n=0.

(1) For 3000 < n &€ max (3000 + &, n*™ ~ 1), continue to recursively update 7, .&;. and

17"::7',2 using (4.7a), (4.7b), and (4.7¢). respectively. In addition, update recursively the

estimate 7 ; as follows :

= x 1 ~
7,(n ~3000) = 7,(n =3001) + ———— (¢ —m,(n —3001)) . (422)
n—3000

(2) For n > max (3000 + &, n™ — 1), continue to recursively update the estimates 7,,

&2, 7ol and 7?1 using (4.7a), (4.7b), (4.7¢), and (4.22), respectively.

Case (iii): pu=1and n=1.

(1) For 3000 < n € max (3000 + 8. n** ~ 1), continue to recursively update 7, 5';, and
mof using (4.72), (4.7b), and (4.7¢), respectively. In addition, update 7?1 using

z P
(4.22) and update recursively the estimates o 2 and 1?6’2 as follows :
P Y B 191

=2 (1_¢") 2 =2 c
o 5(n=3001)+ ————— (2~ 3(n —3001)) if T (1—-¢,)=0
Z (1_¢l) 1 =3001
& 2(n —3000) = F=s00t (4.23)
& 2(n —3001) if ¥ (1—¢)=0
{=3001

and

= == 1 ~
maoi(n —3000) = 7,02 (n —3001) + ——S%-(gb,, Z,?— mol(n —3001)) . (4.24)
n —

(2) For n > max (3000 + §,n**— 1), continue to recursively update the estimates T e

?32. and 1;:5',2 using (4.22), (4.23), and (4.24). respectively.
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Step 4"" . Obtain estimates of the Class A parameters.

Let a, and n* be defined as in Step 4 of the BDM algorithm.

(a) Forn < n*. proceed as in Step 4 (a) of the MBDD algorithm.

(b) If n* < 1000, then for n* < n < 1000, proceed as in Step 4'(b) of the MBDD algorithm.

(¢) If n*< 3000, then for max(1000.n* —1) < n < 3000. proceed as in Step 4(c) of the
MBDD algorithm.

(d) Case (i): u=0.

For n > max (3000, n*— 1), proceed as in Step 4 (c) of the MBDD algorithm.

Case (ii): p=1 and n=0.

(1) If n* < max (300048, n*™— 1), then for max (3000,n*— 1) < n € max (3000 + 3,
n*® — 1), proceed as in Step 4 (c) of the MBDD algorithm.

(2) For n > max (3000 + 8, n*™— 1), obtain estimates of X and o using (4.8b) and
(4.18). respectively. Then, using the relation given in (4.5a), obtain the estimate of A

as follows :

A =—In(1—m,(n —3000)). (4.25)

Case (iii): p=1and n=1.

(1) If n* € max(3000+38 ., n**— 1), then for max (3000,2*— 1) < n < max (3000 + 8,
n** — 1) . proceed as in Step 4 (c) of the MBDD algorithm.

(2) For n > max (3000 + §.n* — 1), obtain estimates of A and o using (4.25) and
(4.18), respectively. Then, using the relation for X given in (4.5b), obtain the estimate

of K as follows:
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& 2(n ~3000)

K, =—Iln(1~7,(n —3000)) | — - (4.26)

7,02 —3000) — 7 ,(n —3000) & 2(n = 3000)

Step 5" : Constrain estimates o f Class A parameters to lie in parameter set of interest .

D.%ne A¥, {3,,1 , B: . B:. and B: as in Step 5 of the BDD algorithm.

(a) Forn < 1000, proceed as in Step 5'(a) of the MBDD algorithm.

(b) For 1000 < n € 3000, proceed as in Step 5 of the BDD algorithm.

(¢) Forn > 3000,

Case (i): u=0.

Proceed as in Step 5 of the BDD algorithm.

Case (ii): u=1 and n=0.

¢D)
(2)

For 3000 < n & max (3000 + &, n** — 1), proceed as in Step 5 of the BDD algorithm.

For n > max (3000 + 8, n** — 1), constrain 4, , X, , and 5': using (4.9a), (4.9b), and
(4.9¢), respectively. (let A, ,K,, and 6: denote the constrained estimates.) If
(4,.K,. 5,,2 )=(4,, I‘('” . 5': ). then execution of this step is complete. However, if
(A, .X,.7)=(A,.K,. &2). then proceed as follows : Modify #;(n). &2(n). and
ﬁrlz(n) using (4.10a). (4.10b), and (4.10c), respectively. (Let 7,(n). E';(n. ). and
7,0 :(n ) denote the modified estimates.) In addition, using the relation given in (4.4a),

modify = (n —3000) as follows (let #,(n — 3000 ) denote the modified estimate):

7,(n —3000) = l—e"g'l )

Finally, set (ﬁl(n).&;(n).wFf(n)) = ("Trl(n).ﬁz(n).‘rr_lo:lz(n))

7,(n =3000) = 7,(n —3000), and (4,.K,.5°) = (4,.K,.7.) .

n




62

Case (iii): u=1 and n=1.

(1)  For 3000 < n < max (3000 + &, n**— 1), proceed as in Step 5 of the BDD algorithm.

(2) Forn > max (3000 +8,n*— 1), constrain A, . X, . and &_ using (4.92), (4.9b), and
(4.9¢). respectively. (let A , X,, and E: denote the constrained estimates) If

(A,.K,.72)=(A,.K,,G>). then execution of this step is complete. However, if

4, .%,. 5': )= (.;1.” ,i’n .6': ). then proceed as follows : Using the relations given in
(4.42)-(4.4c), modify 7 ,(n —3000), & 2(n —3000), and m,0°(n —3000) (let
#,(n —3000), &2(n —3000), and 7,0.(n —3000) denote the modified esti-

mates) :
= -i
7(n —3000)=1—~¢ ",

F2(n —3000) =5}

K, ]
A + K,

and

—_ _,| 4n + 7(n —3000) K,

A + K,

n

Finally, set (7 4(n —3000),& 2(n — 3000) .m0 (n — 3000) ) =( 7,(n — 3000)

&5(n —3000) , 7,02(n —3000)), and (A, .K,,52) = (A,.K,,5°).

The steps of the global decision-directed algorithm are now complete. In the following sec-

tion, the performance of the proposed algorithm will be examined via simulation.

4.4. Simulation Results

In order to assess the performance of the proposed global decision-directed algorithm, an
extensive simulation study of the algorithm was made. First, the sample mean-square relative

error incurred by the initial estimate 5'02 of o was computed for all (4. K.0”) in Q (defined in
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Appendix A) using 100 data sets. The results are tabulated in Table 4.1. It is evident from the
values of the relative errors cited in this table that the sample second moment based on 10000 sam-
ples provides highly accurate estimates of o”. Furthermore, since the estimate of o~ at each itera-
tion of the algorithm is obtained by simply updating this sample second moment, the proposed glo-
bal scheme provides, on the average, highly accurate estimates of o? at each iteration. Conse-
quently, in assessing the ability of this scheme to estimate the remaining two parameters A and X,

2
the parameter 0 was assumed to be known.

Using 100 data sets, each containing a sequence of 5000 observations randomly generated
from the Class A envelope pdf, the 1%-trimmed mean relative bias of the estimate of A and the
1%-trimmed mean relative bias of the estimate of X were computed for each (4, X, o) € Q. Let
b, and by denote these quantities, respectively, and let SJA and SJK denote the relative errors in the

estimates of A and X, respectively, obtained using the j-th data set, i.e.,

J ")
A" —A K’ =K
5/ & —— and 8 4 —— .
A y. ¢

where (A, K7) is the estimate of { A, K ) obtained using the j -th data set. Then,

Table 41. MEAN-SQUARE RELATIVE ERROR OF & (¢ = 1.0)
) 1072 1073 107 1075 107°
A
1072 || 4726641072 | 1.5638x107% | 1.8560x107% | 1.8897x107% | 1.8931x107°
107! 1.5018x107% | 1.7473%107° | 1.7755x10™ | 1.7784x10™° | 1.7786x107°
1 3.2742x107* | 3.3107x107* | 3.3144x10™* | 3.3148x10™* | 3.3148x107*




- (maxSf)—(minSf)
J

1 100
98 J=1 J

and

1 - x X b oK
by & — [ X 8| — (max ) —(min8}) | .
98 j=1 }

The values for these biases are tabulated in Tables 4.2 and 4.3. Note from these tables that the
values for b, and by are quite low for all parameter vectors under consideration. Thus, the pro-
posed global decision-directed algorithm yields an essentially unbiased recursive estimator of the

parameters A and K of the Class A model.

In addition to the relative biases. the following quantities were computed for each

(A.K.0DeQ using the aforementioned data sets:

(i) the 1%-trimmed sample mean-square relative error due to estimating 4 ,

(ii) the 1%-trimmed sample mean-square relative error due to estimating X,
and '

(iii) the 1%~trimmed sample mean-square-norm relative error (MSNRE) due to estimating
A and X.

Let e,. ex. and e, denote the quantities described in (i). (ii). and (iii), respectively. We note
that, for each of these nuantities, the "trimming” is based on the exclusion of a data set which

yields the highest value for e,, and a data set which yields the lowest value for e,, . i.e..if
j* b arg max |67+ 617
J
and

j* 4 arg min [(s;‘)’+ (sf)zl .
J
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Table 4.2. 1% - TRIMMED RELATIVE BIAS OF ESTIMATE OF A (5,)
(¢® =1.0)
K 107 1073 107* 1073 10~°¢
A
1072 3.8241x1072 | 6.0110x1072 | 6.3540%107% | 6.4057x107° | 6.3781x1072
107! || —9.7836%107% | —5.0248X107% | —4.2653x1072 | —4.1699x107% | —4.1542x10~°
1 ~4.5694x107% | —8.8028x107° | —1.6972x10"° | —8.5670x107* | —7.3438x10™*
Table 4.3. 1% - TRIMMED RELATIVE BIAS OF ESTIMATE OF X (b, )
(¢® =1.0)
K 1072 1073 107* 1073 107°
A
1072 || —=6.4449%x107% | 4.6075x107% | 5.2917x1072 | 5.3716x10~> | 1.1140x10°"
107 || —3.5629%1072 | 3.1080x107% | 3.0820x107%2 | 3.4567x107% | 4.8787x107%
1 —3.1074x1072 | 1.4006x107% | —9.2976x107% | —1.6823%107 | 2.0792x1072
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then
1 100
ea=— || L @ —(s;‘;.)’—(s;i)’] ,
98 _
J=1
1 100
ey = — [ > G -(a,‘f.)z—(ajf)zl .
98 _
J}=1
and

€ —=€4 t+ ex.

(For the computations performed here, j* and j* were uniquely determined. However, the
defining properties for these two quantities does not guarantee this. If either j* or j* is not
uniquely determined, then these indices are chosen arbitrarily among those that satisfy the
corresponding defining property.) The computed values for e4. eg. and e, are tabulated in
Tables 4.4, 4.5, and 4.6, respectively. As with the relative biases, it is seen from Table 4.6 that the
MSNRE is quite low for all parameter vectors under consideration. Moreover, from a comparison
of the values given in Tables 4.4 and 4.5, it is evident that neither e, nor ey dominates in its con-
tribution to e,, . Thus, in 2 mean-square error sense, not only does the proposed estimator provide
a very good global estimator of both parameters A and K, but, in addition, it has no difficulty in

estimating one parameter over the other.

Lastly, the normalized sample MSNRE ( 4 5000 X e, ) was computed (see Table 4.7) and
compared to the Cramer-Rao Lower Bound (CRLB). (The values for the CRLB were given in Table
3.8.) Note that the values for the normalized sample MSNRE and CRLB are essentially on the same
order of magnitude. In fact, for 4 = 1072, the values for the normalized sample MSNRE are quite
close to those of the CRLB. Furthermore, a comparison of the computed values for the normalized
sample MSNRE of the proposed recursive estimator and the normalized sample MSNRE of the
batch scheme upon which it is based (see Table 3.9) indicates that the proposed recursive scheme
performs better than the batch estimator for a sizeable subset of the parameter set under considera-

tion.




Table 4.4. 1% - TRIMMED MEAN-SQUARE RELATIVE ERROR DUE TO
ESTIMATING A (e,)
K 1072 1072 107 107% 10~
A
1072 || 1.0896x107% | 1.4162x1072 | 1.4684x107% | 1.4761x107% | 1.4702x107>
107! || 1.3786%107% | 6.4035x107° | 6.0285%1072 | 5.8759x107° | 5.7837x107}
1 3.1014x10° | 1.1524x10 | 1.0628x10~° | 1.0558x10™> | 1.0589x107>
Table 4.5. 1% - TRIMMED MEAN-SQUARE RELATIVE ERROR DUE TO
ESTIMATING X (ex)
K 1072 1073 1074 1073 107
='A=n —————— —_——
1072 || 1.2353x107% | 2.1480x1072 | 2.3808x1072 | 2.3974x107% | 2.8163x107°
107! || 4.1013x107° | 8.2767x107% | 7.4102x107° | 6.3852x107° | 7.5959%x107°
1 3.8256x107° | 3.3176x107° | 2.1203x107° | 1.7420x10™° | 2.3851x107°

67
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Table 4.6. 1% - TRIMMED SAMPLE MSNRE (e,,, )
K 1072 107? 107 1073 107%
A
1072 |} 2.3249x107% | 3.5643x107% | 3.8492x1072 | 3.8735x107% | 4.2865x1072
107 || 1.7888x107% | 1.4680x1072 | 1.3439x107% | 1.2261x107% | 1.3380x1072
1 6.9270x10™° | 4.4699x107° | 3.1831x10™° | 2.7978x107° | 3.4439x10™°
Table 4.7. NORMALIZED SAMPLE MSNRE ( 4 5000 X e,,, )
FOR (A.K.cD€eQ
K 1072 1073 107" 1073 107°
A
e — —— e
1072 || 1.1624%x10% | 1.7821x10% | 1.9246x10% | 1.9367x10% | 2.1433x10°
1071 | 8.9438x10" | 7.3401x10" | 6.7194x10" | 6.1306x10"' | 6.6898x10"
1 3.4635x10' | 2.2350x10! | 1.5916x10' | 1.3989x10' | 1.7220x10!
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In summary then, we see that the proposed global decision-directed algorithm does in fact
yield a global estimator of the parameters which performs very well for all parameter vectors in
the parameter set of interest, even for moderate sample sizes. In view of this performance, this

algorithm provides an effective recursive estimator of the Class A model parameters.

4.5. Conclusions

In this chapter, we have developed a global recursive estimator of the parameters of the
strictly canonical Class A model which performs very well for all parameter vectors in the param-
eter set of interest. The starting point in the study was the development of the so—called BDD algo-
rithm. This basic, decision-directed, adaptive scheme is physic. - .notivated, easy to implement,
and is a recursive version of a batch procedure which was seen in our earlier work to provide good
estimates of the parameters. Unfortunately, examination of the performance of this algorithm via
simulation reveals two inherent drawbacks of the scheme that adversely affect its performance
even in a local setting. However, it is seen that by placing certain restrictions on the form of the
initiation vector for the algorithm and by incorporating the appropriate modifications into its
framework, the ensuing difficulties associated with the two basic shortcomings can be eliminated,
and an improvement in the performance of the algorithm can be attained globally. Examination of
the performance characteristics of the modified algorithm via simulation indicates that this algo-
rithm does, in fact, yield an effective global recursive estimator of the Class A model parameters.
Although this final algorithm is somewhat complex, the payoff for this complexity is excellent glo-

bal performance.
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5. EFFICIENT ESTIMATION FOR SMALL SAMPLE SIZES : THE EM ALGORITHM

S5.1. Introduction

In the previous chapters, we have obtained several batch and recursive estimators of the Class
A parameters that yield good estimates of the parameters for moderate sample sizes. In this
chapter, we will focus our attention on the problem of obtaining a batch estimator of these parame-
ters with good small-sample-size performance for all parameter vectors in the parameter set of

interest.

One estimator that has the potential of providing estimates of the Class A parameters with
the above-mentioned property is the EM algorithm. This algorithm, which is ideally suited for
estimation problems where the observations can be viewed as “incomplete data,” was popularized
by Dempster, Laird, and Rubin in 1977 [17]. We begin this chapter with a description of this algo-
rithm. We then examine the behavior of the EM algorithm within the Class A framework. In par-
ticular, for the single-parameter estimation problem, a closed-form expression for the estimator is
obtained first. Several properties of the estimator are also derived. Using these properties, it is
shown that the sequence of estimates obtained via the EM algorithm converges and a characteriza-
tion of the nature of the point to which the sequence converges is given. An implementation of the
estimator based on the execution of two EM algorithms in parallel is then described. Using this
implementation, the small-sample-size performance of the proposed estimator is assessed via an
extensive simulation study. The results of this study indicate that the proposed EM estimator

yields excellent estimates of the parameter for small sample sizes.

The two-parameter estimation problem is then examined. For the two-parameter estimation
problem, a description of the procedure through which estimates of the parameter are obtained is
given first. Furthermore, using an implementation analogous to the one used for the single-
parameter estimation problem, the small-sample-size performance of the proposed EM estimator is

also assessed via an extensive simulation study. Again, as for the single-parameter estimation
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problem, this study reveals that the EM algorithm yields an excellent estimator of the Class A

parameters for small sample sizes.

5.2. The EM Algorithm

A commonly-used two-step iterative technique for estimating the parameters of a density
when the observations can be viewed as "incomplete-data” is the EM algorithm [17]. Mixture den-
sities, such as the Class A density, can be placed naturally in this framework. In particular, for
such densities. the "incomplete-data” set is the set of observations, whereas each element of the
“complete-data” set can be defined to be a two-component vector consisting of an observation and
an indicator specifying which component of the mixture occurred during that observation. Instead
of using the traditional incomplete-data density in the estimation process, the EM algorithm uses
the properties of the complete~data density. In so doing, it can often make the estimation problem

more tractable and also yield good estimates of the parameters for small sample sizes.

Let 8 denote the parameter vector to be estimated, ﬁ(‘u) the estimate of 8 obtained at the p-th
iteration of the algorithm, z the incomplete-data set (set of observations), x the complete-data set,
and g the likelihood function associated with x. The two steps. the expectation step (E-step) and

maximization step (M-step), of the EM algorithm are then given as follows :

E-step: Evaluate Q(,@_IQ_(P))AE[ logg(x |8)] .87,
M-step: Determine 8 = I *1) 1o maximize Q(_G_I,Q(’ ).

The EM algorithm can be viewed as an alternative to maximizing the function g over 8. In partic-
ular, since g is unknown, we instead maximize its expectation given the available pertinent infor-

mation, namely the observed data and the current estimate of the parameters.

Consider the following basic property of the EM algorithm : Let L denote the likelihood
function associated with z, i.e., the incomplete-data likelihood function. If the function g is posi-
tive almost everywhere on its domain, then it can be shown via a simple application of Jensen's

Inequality that
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L(eP*Yy > L6 | p=0.1...., (5.1)

i.e., the likelihoods of interest are monotone increasing in _Q(’ ). Given this desirable property of the
EM algorithm and its estimation potential for small sample sizes. let us now consider the problem

of estimating the parameters of the Class A model via the EM algorithm.

5.3. Estimation of Class A Parameters

Letz A{z,,..., z,} denote the incomplete-data set consisting of n i.i.d. observations gen-
erated from the Class A envelope pdf w, with unknown parameter vector 84 (A, X ) to be
estimated. With each observation z;, we can associate an unobserved infinite-dimensional indicator
vector v; = (v, yeJ =1.2,.. 7. whose entries are all zero except for one equal to unity in the posi-
tion corresponding to the unobserved component of the Class A envelopc mixture density associ-
ated with z;. Thus, let x A {(z;.v)):i=1,....n} denote the complete-data set and g denote the
likelihood function associated with x. Under the assumption that v,,...,v, are i.i.d. and that the

z; given v, are conditionally independent and identically distributed, we have that

g(z|) =TI L= )"k (z:0)".

i=1 j=1
where
-A ,j-1
A
m,(A)=
(=
and
.2 A+X
A+x ) T o
h,(z,.8)=2z; |[———|e
j—1+K
The corresponding logarithm is given by
L (8)=3F <v,.,V(8)> + ¥ <v,.U;(8)> (5.2)
i=1 i=1

where V() and U;(8) are infinite-dimensional vectors with the j—th component In m; and
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Inh;(z;;8). respectively. and <.,.> is the standard {,-inner product. Let 074 (4,.K, b
(AP >0, KP >0),z =0,1,..., denote the estimate of § obtained at the p —th iteration of the EM
algorithm. Then, using (5.2) and the definition of the Q function given in the E-step of the EM

algorithm, we have that

0(0|6°)=3 <a,.V(8)>+ 3 <aq,.U,(8)> . (5.3)
i=1 i=1
where
aiQE(vilg._O_(’))=E(vilzi.ﬁ(‘")) (5.4)

and the latter equality fcllows from the independence assumptions stated above. Let g ;
(j =1.2,...) denote the j—th component of a;. Then it follows from (5.4) and the definition of

v; that

m, (A, ) R, (2,097

e =
> \ (5.5)
Zm(4,) k(G :6%%)

/=1
Now, the second step of the EM algorithm, the M-step, requires that we determine the argument
0=(A,K) that maximizes Q ( 8] Q_‘ ?)). To make the dependence on A and X more explicit, we
can use the definitions of V', U;. 7, and h; to rewrite the expression given in (5.3) in terms of A

and X as follows:

0816%Y=3F S a, (-4 +(j —1InA —In(j —1)1]

i=1)=1
- < (4 +K) (4 +X) (5.6)
+
+2 Y a,|ln2z +In -z )
i=1=1 (j -1+ K) (j~1+4+K)
Using the fact that Zau =1 and eliminating all terms in (5.6) that are constants with respect to
=1

the maximization, we obtain the following objective function Q,, (86
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05, (08]8")=~n A + alnA + n In(A+K)
“¥ Sayin(i-1+K) - A+K)F ¥ 2P —nr . ©D
i=1)=1 i=1 =1 (j—1+K)
where @8 3 3 (j —1)a;;. The M-step then yields as the estimate of the true parameter vector at
i=1)=1
the p +1-st iteration of the algorithm a maximizing argument of our objective function, i.e.,
(P +1) _ (p)
9 —argmeawa(Q,l_O_ ). (5.8)

With regard to this mrximization, let us address the single-parameter estimation problem first.

5.4. Single-Parameter Estimation Problem

Consider the single-parameter estimation problem wherein the parameter A is unknown and
the parameter X is known. Let Qx denote the objective function to be maximized in the M-step of
the EM algorithm for this single-parameter estimation problem. Then. upon fixing X, to its known
value X in (5.7), and thereafter eliminating all terms in (5.7) that are constants with respect to the

one-dimensional maximizaticn, we obtain the following expression for Qp :

QK(AIAP)=-—nA+BlnA +nIn(A +K)—¢ 4, (5.9

where BA Y T (j~1)b,.¢4F T ziz(b‘-}/(j—1+K)). and b, 44, lx —x - Now, recall from
P
i=1;=1 i=1)=1

the definition of the parameter set A of interest, that A takes on values in the interval

- x
A, 410 ?,1]. Define A, to be an extension of this interval:
b -
A, A1A] (107%/(1+€)) € A € 1+€). €>0, (5.10)

z
where € is chosen arbitrarily!, and let A, be the compact set over which the maximization is per-

formed in the M-step of the EM algorithm. i.e..

'We consider an e-extension of A, instead of A, itself since, for the boundary points 1072 and 1 of A 4 itisonly rea-
sonable that we admit estimates of these parameter values that lie in a neighborhood of the true values (see (5.14)).
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A, =arg max Qp(A]A4,), A EA,.

P
AEA: (5.11)

This maximization problem can be readily solved by noting the following property:

Basic Property :For each p € 0,1.....Qx(A|A,) is concave in A on (0, e0) (for all X > 0).

Proof: From (5.9). we have that

62 B n
Q0 (4lay=-S 2

x
Since A, € A, for all p, it follows that A, > O for all p, which implies from the definition of
that 8 > 0. Thus,

2

3

> Qr(4]4,) <0 for all p

It follows from this basic property that, if Q attains its maximum at an interior point of (0,0),
then a necessary and sufficient condition for A =A ., to be the maximizing root on this interval is

that

3
G—A_QK(AMP)IA:Am:o ) (5.12)

Evaluation of this gradient equation yields the following quadratic equation :

a1A2+a2A +a3IA=Am =0,

where a,:=—n ~¢.,a,:=a, K +8+n, and a,: =B K. Note that a,, a,, and a, are functions
only of z.A,.and XK. Now, it follows from the definition of ¢ that ¢ is nonnegative, which
implies that a, < 0. Furthermore, since B > O (see proof of Basic Property) and X > 0 , it also
follows that @, > 0. Given that a, and a, are negative and positive, respectively, and the require-

ment that A_,. be positive, one of the roots to the quadratic equation can be disregarded

g
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immediately, and we obtain the following closed~-form expression for A ,,, in terms of the observa-

tions, the known parameter X', and 4, :

4 _al(A,AP,K)+[a22(_A.AP.K)—4ax(_2_'Ap'K)as(—z-'Ap'K)]Uz (5.13)
:nax -2a1(_z__.AP.K)

x
Since A ,, maximizes Qx on (0, eo), it follows that if A ,, liesin A4, then A ., maximizes Q; on
* x
A, . However, if A, lies outside of Ay, then it follows from the Basic Property of Qp that the

x *
argument which maximizes Qx on A, is simply the boundary point of A4 nearest A_,,. In sum-

mary then, the solution to (5.11) is given as follows:

-2 -2

10 1o
1+¢€ ™ 1+e

* (5.14)
Ap = A max if Amax € AA

1+e if A ,>1+¢€

x
A, € A . The estimator described by recursion (5.14) will be referred to in the sequel as the EM

estimator of A.

5.4.1. Properties of EM estimator of A

2

0x(4]4,)

Let (0.00) be the domain of Qp (X > 0). Note that iQK (4]4,) and
aA 2

exist forall A € (0, o).

Property 1: Foreachp € {0.1,,... }. there exists A, > O such that
2
Or (A, 1114,)=0, (A |4,)20,(4,,,—-4,)

Proof. The property clearly holds if A, =A,,,. Suppose A, = A,,;. Expand 0r(A]A,) in a

Taylor series about 4, ,, to obtain
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Or (A14,)=0r (A, 114,044 —4,,) L0 (4, ]4)
X P X p+1 p+1 aA QK p+1 P
o2 (5.15)
+(4 -4, — QK(APHIA )
for some A;_,,l satisfying min(4,.4,,,) <A »+1 <max(A4,.4,,,). Evaluation of (5.15) at
A=A, yields:
_ d
QK(APIAP)_QK(AP+1|AP)+(AP —Ap+1)—QK(Ap+1IAp)
(5.16)

2
+(4, —4, ) 6—17 0r(A™1[4,).

Now, A, ., can take on one of three values: (107 /(1+€)), A_, .or 1+ € (see (5.14)).

(i) Suppose A4,,;=A,, - Then ;i:- 0r(4,,1]14,)= a—i— Ox (A x| 4,) =0, where the latter

inequality follows from the definition of A paxe Consequently,

4, - A,,+1>6AQK<A,H|A> 0.

 J
(ii) Suppose A4, ,, =(1072/(1 +¢€)). Then, A,,, <A, (since, of course, A, € A, also). Also note
p+1 p+1 P p A

that A, = (10%/(1+¢€)) only when A_, < (107%/(1+¢)), ie. A, 41 Z Ay, Since
A, 412 Apy, and -::QK (A pax|A4,) =0, it follows from the Basic Property of Qx that

%QK(APHIAP)ﬁO. Thus, we have that 4,—A,,; =0 and 9 2x(4,114,) <0,

which imply that (4, ~ 4, ﬂ) ” 0x(4,,114,) <0

(iii) Suppose A,,;=1+e€. ThenA,,; > A,. Also note that A,,; =1+ €only when A, = 1 +¢€,

max

ie., A, SAqg, Sinced,, A, and % Ox (A 1z |4,)=0. it again follows from the

Basic Property of Qp that —a—Qx (£,4114,) 2 0. Thus, we have that A4, —A,,; $0and
94

% Qx(A,4,|4,) 2 0. which imply that (4, — 4, ;) 9 Qr(4,,1]4,) S0
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In all three cases. (4, — A4, ,,) % Qg (4,,,]4,) €0, which together with (5.15) implies that

a2

QK (Ap +1 I Ap ) - QK (Ap IAp ) 2 - (Ap +1- Ap )2 QK (A:+1 IAp )

2

2

x
Moreover, from the concavity of Q . we have that Ox (Ap wl A, ) < 0. Thus, by taking

2

2
) *
XP =-- aAz QK(Ap+1|Ap)'

the statement of the property follows. 0

The following property follows straightforwardly from Property 1:

Property 2: For each KX > 0, there exists a scalar A > 0 such that

0r(4,4114,)—0x(4,|4,) 21 (4,,,—4,) forallp€{0.1,..}.

Proof We have shown in Property 1 that for each p € {0, 1,..} , there exists A, > Osuch that

0r (4, 14,)—0x(4,14,) Z 1, (4,,,—4,) . (5.17)

where

2

i) *
AP == aAz QK(AP*"IIAP) (5.18)

3
when A, # A, ,, and min(4,.4,,,) <4,,, <max(4,.4,,,). Equations (5.9) and (5.18) yield

*he following expression for A, :

A i -

P = x
(4,7 A, +K)

where the dependence of 8 on p is explicitly shown here. Since 8, > O for each p . it follows that
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n
A D> —
P * 2
(4,4 +X)
* x
Furthermore, since min(A4,.4,,,) <A4,,; <max(4,.4,,) and 4, .A4,,, € A,. we have that

x x *
A, €A, ie A, S1+e Thus,

n
A, > —————— for all p

" Uterk)
which implies that

n
A inf), 2 ————— >0 . (5.19)
» A+e+x)

It then readily follows from (5.17) and (5.19) that

0x (A, 1114,)—0x(A,14,) 2 N4, ,,—A,) for all p
Thus, we have the desired result. a
We are now in a position to prove the following convergence theorem. Let Lp denote the

incomplete-data log-likelihood function for known X (X >0), i.e.. the traditional log-likelihood

function for the single-parameter estimation problem :

n -]
3
Le(A)=F In Em(A)h(z;:4.K) . A€A,
i=1 =1
| asx (5.20)
ia I E_'?.e""‘A"1 A+K RN
= z; e .
o D G=or (i-1k 4

] %
Note that Ly is continuous on A, and differentiable in the interior of A,. Since Ly is a continu-

x
ous function on the compact set A,. it follows that Ly is bounded. Furthermore, from (5.1). we

have that Lg(A,,;) > Lg(A,) for all p€{0.1,....}. Thus. since {Lx(A4,)} is a monotone

*
bounded sequence. {Ly(A,)} converges monotonically to some L . Now. let
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*
L(B)Aa{A € A, :Ly(A)= ). The statement of the theorem is then given as follows:

x %* *
Convergence Theorem : Let Ly and L be defined as above. Then 4, A4 €A, and

% LI x x aLK
Lg(A,)— L =Lg(A . Furthermore, if A is an interior point of A,. then =0,

34 la=a®

x
i.e.. A is a stationary point of L, , the likelihood function of interest.
x x * *
Proof: It is evident that if A, A .then L =Lg(A ). Now. in order to show that 4, = A . it
suffices to show that
(D]A,44—A, |+ 0asp =, and
x
(ii) L (L ) is discrete.

That these two conditions are sufficient for the convergence of {Ap} follows from Theorem 6 of

Wu [18].

Consider condition (i). We have shown in Property 2 that there exists a scalar A > 0 such

that
Or(A,,1]14,)—0x(4,]4,) 21 (4, — 4, ¥  forallp€{0.1....). (5.21)
From the definitions of Ly and Qy . it can also be readily shown via a simple application of
Jensen's Inequality that
Le(A, ) —Lg(A4,) 2 Qp(A4,,,]14,)—0x(4,]4,) forallp€{o.1... 3 (5.22)
(see proof of Theorem 1 of Dempster, Laird, and Rubin [17]). Thus, it follows from (5.21) and
(5.22) that
Le(A,,)—Lg(4,)20(4,,,—4,) forallp€fo.1,...}. (5.23)
Since {Ly(A,)} converges, we have that |Lg(4,,)—Lgr(4, MN=Lg(A, ) —Lg(4,) ~0 as

p = oo , where the first equality follows from the monotinicity property of {Lg(A,)}. It then fol-

lows from (5.23) that | A, 4, = 4,| = { as p —oo and the verification of condition (i) is complete.
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b J x
Consider condition (ii). We need to show that {A € A, : Ly (A)—L = 0} is discrete. It can

] *
be readily shown that Lg(A)—L isanalytic in A,. Since it is well known that the zeroes of an

analytic function (which is not identically to zero) are isolated, the result follows.
*
The verification of conditions (i) and (ii) is now complete. Since 4, =+ A in the closure of
x * . ® x *
A, and A, is a closed set, it follows that A € A,. We must now show that if A is an interior

x x
point of A,, then A is a stationary point of Ly . Again, from Theorem 6 of Wu [18], it suffices to

show that

(iii) -a%— Qx (4, 44 | A,) =0 forall p sufficiently large, and
. 9 * *
(iv) — Q0 (A|A,) is continuous in (A, 4,) on Ay XA, .

g4a

zx
Consider condition (iii). If A is an interior point of A4, then there exists some p’ such that

x
A, . is an interior point of A, for all p 2 p’. Thus, it follows from (5.14) that 4, ,, =A ,, for

max

all p 2 p’. (Of course, A ,, varies with p.) Since —§—QK (A nax |4, )= 0 by definition of A ;.
34
we have that 2 Qx(A,,1|A,)=0forallp > p’. The verification of the condition is complete.
34

Consider condition (iv). Note that the infinite series in the expression for @y (4]4,) given in
. . * * .
(5.9) are uniformly convergent series on Ay X A,. Furthermore, each term of a given series is a
- ‘ * . . . -
continuous function on A, X A,. It follows then that each series is a continuous function on this

: a : .
domain. Thus, the expression for — Qx (A| A, ) consists of sums and ratios of continuous func-

] *
tionson A, X A,. The result follows.

x ] *
Since conditions (iii) and (iv) hold, it follows that if A is an interior point of A,. then A

is a stationary point of Ly. The proof of the theorem is now complete. O
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The particular stationary point to which {4 » } converges is dependent upon the 'initiating point
A,. Thus, given a "sufficiently rich” set of initiating points, then upon executing several EM esti-
mators of A in parallel, each initiated with a different point from this set, all of the stationary
points corresponding to relative maxima of the (traditional) likelihood function can be located, and
hence, the point(s) corresponding to the absolute maximum. With this in mind, consider the fol-

lowing implementation of the EM estimator of A .

5.4.2. Implementation of EM estimator of A

*
First, choose € = 0.1 in the definition of A, (given in (5.10)). Secondly, let t! set of initiat-
*
ing points, Ai,‘?,., , consist of the left boundary point of A, and the (logarithmic) mean of the inter-

val defined by A: Lie. A}, ={9.09x 107,107}, (That the two points in Aj, form a "sufficiently
rich” set for the determination of the point(s) corresponding to the absolute maximum of the (trad-
itional) likelihood function was verified experimentally.) For each true parameter A , two EM esti-
mators of A were executed in parallel, one initiated with 9.09 X 107>, the other with 107", Let
{API} and {APZ}. p =0.1,..., denote the sequences of estimates obtained via these two EM estima-
tors (A4 =9.09 x 10~ and AZ = 10™"). Both EM estimators "converged” in the sense that, for each
estimator, the magnitude of the relative difference in the values of the estimates on successive
iterations decreased as the number of iterations increased. For each of the two sequences of esti-

mates {A,}. i =1,2, the so-called convergence iteration value was then taken to be the minimum

iteration value I ([ 2 1) for which |((4;'—A4,_, /A)| < 107". Let p* and p™ denote the conver-

gence iteration values for {API} and {Apz}. respectively. Then, of the two "limits" Apl. and Apz,, .

the estimate A of the true parameter A was chosen to be that limit which maximized the tradi-

tional incomplete-data likelihood function, i.e..

Adarg max  Ly(A).

1 2
A€ lA,. ,A,“ }

Let us now examine the performance of this estimat.r.
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5.4.3. Simulation results

An extensive simulation study of the proposed estimator was performed for a wide range of
parameter vectors (A.XK) in A, in particular, for all (A4.X )Y € o . where
Q‘ 8{A.k)Y €A |logA € Z and log XK € Z}. For each (A .X) pair, X was fixed to its true value
and estimates of the paramter A were obtained using the implementation of the EM estimator of
A described above. Using 100 data sets, each containing 100 samples generated from the Class A
envelope pdf, the sample mean-square relative error was first computed. Let p, denote this quan-

tity. Then

where A ) denotes the estimate of A obtained using the j —th data set. The values for p, are tabu-
lated in Table 5.1. Note from this table that the values for the sample mean-square relative error
are extremely low for all (4 .X) pairs under consideration (on the order of 10~ to 1072). The
values of the normalized sample mean-square error (NSMSE), which is defined to be the product of
the sample size (100) and the sample mean-square relative error, were then computed (see Table
5.2) and compared to the Cramer-Rao Lower Bound (CRLB). (The values for the CRLB are given
in Table 5.3.) Note that the values for the NSMSE are very close to the CRLB for all (4 .X) pairs.
The reason that the values for the NSMSE are sometimes lower than the CRLB is due to the fact

that the estimator is slightly biased, as is evident from the values of the sample relative bias, n, ,

tabulated in Table 5.4. Now, it was noted in the implementation described above that the estima-

tion process involved executing two EM estimators of A and each "converged” within a certain

number of iteraiions, namely p,* and pf' . (The association with the j —th data set is made explicit
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Table 5.1. SAMPLE MEAN-SQUARE RELATIVE ERROR (p, )
(100 SAMPLES, 100 RUNS)
K 1072 1073 107 1073 107
A
1072 32532x1072 | 1.0449%x 1072 | 8.7841x 10> | 8.6326 x10 | 8.6176 x 10™°
107! 1.3591x 1072 | 1.0324x 1072 | 9.4479x 107> | 9.2596 x 10~ | 9.2451 x 107>
1 1.7950 x 1072 | 6.4732x 10~ | 6.8095x 10~ | 6.5755x 10" | 6.6118 x 10>
Table 5.2. NORMALIZED SAMPLE MEAN-SQUARE ERROR
(100 SAMPLES, 100 RUNS)
K || 1072 1072 107 1073 107
A
1072 || 3.2532 1.0449 8.7841 % 107 | 8.6326 x 10 | 8.6176 x 107"
107" || 1.3591 1.0324 9.4479 x 10 | 9.2596 x 10" | 9.2451 x 107!
1 1.7950 | 6.4732x 10" | 6.8095x 107" | 6.5755x 107 | 6.6118 x 10~
Table 5.3. CRAMER-RAO LOWER BOUND FOR ESTIMATE OF 4
k|| 107 1072 107 1073 107°
A
1072 || 4.0291 1.2041 1.0112 9.9246 x 10! | 9.9055 x 107!
1071 || 1.3054 | 9.7417x 107" | 9.3217x 107! | 9.2600x 10" | 9.2509 x 107!
1 1.3227 | 9.6827x 107" | 9.0303x 10~ | 8.9045x 10" | 8.8821x 107"




Table 5.4. SAMPLE RELATIVE BIAS (7, )
(100 SAMPLES, 100 RUNS)
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X 1072 1072 107 1073 107
A
1072 || 1.3683x 107" | 8.1403x 1072 | 7.4757x 1072 | 7.4103x 1072 | 7.4038 x 1072
107! ] 9.1323 %1072 | 8.0240x 1072 | 7.6436 x 1072 | 7.5664x 1072 | 7.5585x107°
1 84126 x 1072 | 6.8618 x 1072 | 7.1043x 1072 | 6.8923x 1072 | 6.9436 x 107>

Table 5.5. WORST-CASE CONVERGENCE ITERATION VALUE (p_,,)
(100 SAMPLES, 100 RUNS)

k10?1710 ]10°%] 10°
A
102 || 788 | 6.59 | 5.32 | 4.85 | 4.41
107" J111.18 | 6.61 | 5.47 | 524 | 521
1 27.99 | 20.02 | 18.75 | 17.45 | 16.90
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here.) Let p ., denote the sample worst-case convergence iteration value, i.e.,

1 100
Punxé _Z max(P;-P;*)'
100):1

The values for p.,, are tabulated in Table 5.5. Note that the values for this sample worst-case
convergence iteration value are extremely low for all parameters under ccnsideration (on the order

of 10).

[n summary, we see then that for a sample size of 100, the proposed EM estimator of A per-
forms very well in a mean-square error sense, in terms of attaining the CRLB, and in terms of rate
of convergence. Consequently, for the single-parameter estimation problem, it yields an excellent

estimator for small sample sizes.

5.5. Two-Parameter Estimation Problem
The maximization problem described by (5.8) will now be considered. As for the single-
x
parameter case, define A4 to be the following extension of the parameter set A:

A

x — — —_— = -
Al (A, K): 9.09%x10°S A< L1 and 9.09 x 107 < X € 1.1X107°

x
and let Ay be the compact set over which the maximization will be performed, i.e.,

Ge+1) _ (p) (0) *
8 argmaz:QobJ(ﬁlﬁ)_ ). 87 €eAg (5.24)
8€Ag
Consider first the gradient equations
E?Z Qos) (8]8°h=0 (5.25a)
and
3 ®)) =
5{- Qs (8]8°) =0 . (5.25b)

Upon computing the partial derivatives on the left-hand sides of (5.25a) and (5.25b). the gradient

equations become
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[ n "oz i}
—-n +—+ -yX 32 = (5.262)
A A+K 007 (j-14K)
and
-2+ ————+(A+K) 27— =0.  (5.26b)
A+K j= (G —14K) sty G-14K)

Now (5.26a) simplifies straightforwardly to a quadratic in A. Using an argument analogous to the
one given in Section 5.4, it can be shown that one of the roots to this quadratic can be disregarded,
and the following closed~-form expression for the parameter A can be obtained in terms of the

parameter K :

nK+égK—a—n~[(nK+&K—a—nY +4(n+&)ak]?
4= , (5.27)
—2(n+é;)
where £ &4 3 2 z,;"———— . Upon substituting the expression for A given in (5.27) into
jm1ym U—14K)

(5.26b), we obtain an equation in X only. Thus, the two-variable maximization problem has been
reduced to a maximization over the single variable X. Unfortunately, the resulting equation in X

is highly nonlinear in this parameter. However, since the maximization is performed over the set

x —— - -
Ag . K takes on values in the interval [9.09 X 107", 1.1 X 10°]. Thus j—1+K =j—1 for j > 2.
Using this approximation, the highly nonlinear equation in X can be greatly simplified. Moreover,
the square of the simplified equation can be reduced to the following fourth-order polynomial

equation in X :

c K+, K+ e K+ c,K+c5=0, (5.28)

where the coefficients ¢; (1< i £5) are functions only of the observations and the current estimate
.9_(’) of the parameters. (The expressions for these coefficients are given in Appendix B.) The roots
of (5.28) can be readily determined. Consider the set consisting of the positive, real roots of (5.28)
which lie in the open interval (8 X 107", 1.2 X 1072) and which satisfy the simplified, unsquared

equation in K. These roots can be refined using Newton's root-finding method on the original
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equation initiated with these roots. For those refined roots which take on values in the interval

(9.09 X 107", 1.1 X 1072).2 the corresponding value of A is then evaluated using (5.27). If the value

of A lies in (9.09 X 10>, 1.1), then the resultant (4, X) pair yields a stotionary point in the inte-
3
rior of Ay . If the value of A does not lie in this interval, then the resultant (A K) pair yields a

*
stationary point that does not lie in the interior of A, . and hence, is eliminated from future con-

sideration.

x
The above procedure yields those stationary points that lie in the interior of Ay . Let us now

focus our attention on the problem of determining those stationary points that lie in the interior of

each of the four intervals which define the boundary of A; . First, consider the interval defined by
K =9.09%x10”" and A €[9.09x107%,1.1]. Clearly, for fixed X. any stationary point must
satisfy (5.27) evaluated at this fixed value of XK. Now, upon evaluating (527) with
K =9.09 X107, if the resulting value of A lies in (9.09 x 1073,1.1). then the stationary point
defined by this value of A and X =9.09 X 107 is retained for future consideration; otherwise, it is
disregarded. Now. consider the interval defined by X =1.1X 107 and A € [9.09 x 107>, 1.1].
Again, upon evaluating (5.27) with X =1.1Xx 1072, if the resulting value of A lies in
(9.09 X 107, 1.1), then the stationary point defined by this value of A and X =1.1x107° is
retained for future consideration; otherwise, it is disregarded. Let us now determine the stationary
points in the interior of the interval defined by A =9.09 X 10~ and X € [9.09 X 107, 1.1 X 1072} .
Now, any stationary point in the interior of this interval must satisfy (5.26b) evaluated at
A=9.09 x 10", Since (5.26b) is highly nonlinear in X, the determination of the roots of (5.26b)
(A=9.09%x107%) can be simplified by using once again the approximation that j—1+X = j—1 for
j 2 2. Using this approximation, (5.26b) can be reduced to the following fourth-order polynomial

equation in X :

2t was verified via simulation that the interval (8x1077, 1.2x10" ") was sufficiently large to contain those roots whose
refinement yields, at least, all roots of the original equation in (9.09x10™ ,1.1x1072),

ﬁ
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d K*+d,K’+d, K°+d ,K+d =0 , (5.29)

where d,=8, . d,=2AB,—B, . d;=B,A’—B,A+B,—B,+n. d,=28,A-B,A .
dg= B3A2. and where the B;'s (1S5 i €4) are functions only of the observations and the current
estimate of the parameters. (The expressions for these B; ‘s are given in Appendix B.) Consider the
positive, real roots of (5.29) that lie in the interval (8 X 10", 1.2 X 1072). These roots can be
refined using Newton's root-finding method on (5.26b) (A = 9.09 x 10™>) initiated with these roots.
If the value of the refined root lies in the interval (9.09 X 107, 1.1 X 1072), then the stationary
point defined by A =9.09 X 102 and X equal to the value of the refined root is retained for future
consideration.’ Otherwise, it is disregarded. The stationary points in the interior of the interval
defined by A=1.1X10" and X € [9.09 X 107", 1.1 X 10~?] are determined in a completely analo-

gous manner.
. - . 3 3 *
The function @, is now evaluated at all stationary points in the interior of Ay , at all sta-

x
tionary points in the interior of each of the four intervals which define the boundary of Ag and at

x —_— _ - — - — -—
the four corner points of Ap : (9.09x10711x107%) , (9.09x107,9.09x107"),
(1.1.1.1x 1072, and (1.1,9.09 x 107)". Of the points at which Q,,, is evaluated, the solution
to (5.24) is taken to be that point which maximizes Q.- For a given Q(o). we will refer to this

solution as the EM estimator of 8.

5.5.1. Implementation of EM estimator of 6
As for the single-parameter estimation problem, two EM estimators of O were executed in

— _ _ *
parallel, one initiated with (9.09 x 1072, 1.1 x 10 )T (the vector in A g for which the ratio of the

— T . .
second coordinate to the first is largest), the other initiated with (10™",10™")" (an interior vector

E
of Ay for which the ratio of the second coordinate to the first is the logarithmic mean over all

3Agnin, it was verified via simulation that the interval (8><10_7 , l.&xlo_ was sufficiently large to contain those roots
whose refinement yields, at least, all roots of the original equation in (9.09%10™",1.1x107%).
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possible values that this ratio can take on for parameter vectors in A;).‘ Let {6 “)a {(Apl. Kpl)r}
and {82} 4 {(Apz. sz)r) .p =0,1. , denote the sequences of estumates obtained via these two
EM estimators (Ql(o) =(9.09%107%1.1x107%) and 9_2(0) = (107, 1077). Both EM estimators
"converged” in the sense that, for each estimator, the magnitude of the relative difference in the
values of the estimate (of each parameter) on successive iterations decreased as the number of
iterations increased. For each of the two sequences of estimates {8 ,-(’ )} ,i=1,2. the “convergeuce
iteration value” was then taken to be the minimum iteration value ! ({ 21) for which

|((A/~A, )4 <1077 and |((&/'—K,_,)/K)] < 107", Let p’ and p”* (p'.p"* 2 1) denote the
convergence iteration values for {8 1(" "} and { 8 2(’ 4, respectively. Then of the two "limits” 8 1(" K
and 8 2(’ “). the estimate Q of the true parameter vector was chosen to be that limit which maximized
the traditional inccmplete~-data likelihood function, i.e.,

f=arg  max L(4).
_e_e(g-l(pl)‘gz(Pll)}

where

L(8)=y mnYm (A),(z;;:A.K) .

i=l =1

Let us examine the performance of this estimator.

5.5.2. Simulation results

As for the single-parameter estimation problem, an extensive simulation study of the pro-
posed estimator was performed. Using 100 data sets, each containing 100 samples generated from

the Class A envelope pdf. the sample mean-square norm relative error (MSNRE) was first

“It was observed via simulation that the convergence of the EM estimator to & vector that closely approximated the
true parameter vector was highly dependent on the value of this ratio. In particular, if the ratio of the second coordinate of
the initiating vector to the first exceeded (but not considerably) the corresponding ratio for the true parameter vector, then
the EM estimator was guaranteed tc converge to a vector that closely approximated the true parameter vector. Thus, given
the two initiating vectors, at least one of the EM estimators was guaranteed to converge to a vector with this property. This
restriction on the above-defined ratio was also seen to be a necessary condition for convergen-e of the BDD algorithm formu-
lated in Section 4.2.
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x x
computed for each § € Q@ . (The definition of Q was given in Section 5.4.3.) Let py denote this

quantity. Then,

R 2 2
100
y (A -a) (& -k
Pg = 3 + .
® 100,70 4 K

where _é_j 4 (A) .121 Y (1 £ j £100) denotes the estimate of 8 obtained using the j—th data set.
The vaiues for Py are tabuiated 1n lable 5.6. Note from this table that the values of this relative
error are quite low for all parameter vectors under consideration (on the order of 1072 t0 1071).
The values of the normalized sample mean-square norm relative error (& n X MSNRE) were then
computed (see Table 5.7) and compared to the CRLB. (The values of the CRLB were given in Table
3.8.) Note that the values of the normalized MSNRE are either close to the CRLB or lower than the
CRLB. The reason that the values for the normalized MSNRE are sometimes lower than the CRLB
is due to the fact that the estimator is somewhat biased. as is evident from the values of the sample

relative bias, 7,

1 w(A,-4) [K-&
Mo = )3 + .
- 100, _ A K
i=1
tabulated in Table 5.8. Now. it was noted ¢ - :hat the estimation of 8 involved the execution of
two EM estimators of 8 in parallel and eact  averged” within a certain number of iterations.

namely p; and p;’ . (The association with the j—th data set is made explicit here.) Let p o,
denote the sample worst-case convergence iteration value, i.e.,

y 100
9 ’ r
P & — 2, max(p] . p/
100, _,
The values for p,%u are tabulated in Table 5.9. As was the case for the single-parameter estima-

tion problem, note that the values for this sample worst-case convergence iteration value herz are

also extremely low for all parameter vectors under consideration (on the order of 10).

In summary then, we see that for a sample size of 100, the proposed EM estimator of 8 per-

forms again very well in a mean-square error sense, in terms of attaining the CRLB. and in terms
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Table 5.6. SAMPLE MEAN-SQUARE NORM RELATIVE ERROR ( py)
(100 SAMPLES, 100 RUNS) -

1072 107° 107" 107* 107°
5.6312x 1072 | 7.7317x 107" | 7.0539 x10™" | 6.9907 x10™" | 6.8783 x 107"
8.5002 X 107% | 1.3443x 10" | 1.2567x 107" | 12522 x 107" | 7.484 x 107°
3.4455x 1072 | 4.9856 X 1072 | 4.8199x 1072 | 4.6672 x 10™% | 3.0990 x 107

1

Table 5.7. NORMALIZED MEAN-SQUARE NORM RELATIVE ERROR
(100 SAMPLES, 100 RUNS)

Kk || 107 107} 10~ 10°3 10

1072 || 5.6312 | 77.317 | 70.539 | 69.907 | 68.783

107! |[ 8.5002 | 13.443 | 12.567 | 12.522 | 7.484

1 3.4455 | 4.9856 | 4.8199 | 4.6672 | 3.0990
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Table 5.8. SAMPLE RELATIVE BIAS (7,)
(100 SAMPLES, 100 RUNS)
K 1072 107} 10~ 1073 10°°
A
1072 || 2.6277x 107" | 6.7566 x 107 | 6.5280x 107 | 6.5049 x 107" | 6.0676 x 10™*
107! |1 32896 x 107! | 4.1521x 107" | 4.0252x 107! | 4.0185x 107 | 2.7972 x 107}
1 2.0539x 107" | 2.3343x 107" | 2.3146 x 107" | 2.3049x 107} | 1.8362 x 107"
Table 5.9. WORST-CASE CONVERGENCE ITERATION VALUE (p2 )
(100 SAMPLES., 100 RUNS)
k102|100 |107*"] 10| 10
A
102 || 498 | 1480 | 6.78 | 422 | 4.25
107! |l 2224 | 1070 | 8.70 | 8.53 | 7.82
1 27.98 | 23.86 | 22.73 | 22.62 | 20.38
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of rate of convergence. Consequently, it yields an excellent estimator for small sample sizes for the

two-parameter estimation problem as well.

5.6. Conclusions

In summary, we have seen in this chapter that the EM algorithm uses the properties of the
incomplete-date likelihood function in the estimation process, and so is ideally suited for estimat-
ing the parameters of mixture densities such as the Class A density. It has many desirable features,
e.g.. its monotonicity property for the likelihood sequence and its estimation potential for small
sample sizes. Moreover, within the context of estimating the Class A parameters, we have shown
that, for the single-parameter estimation problem, the sequence of EM estimates converges.
Furthermore, we have shown that if the limit point to which the sequence converges is an interior
point of the compact set over which the maxmization is performed. then it must necessarily be a
stationary point of the likelibood function of interest. Using an implementation based on the exe-
cution of two EM algorithms in parallel, an extensive simulation study for both the single-
parameter and two-parameter estimation problems was also performed. The results of these stu-
dies indicate that the proposed EM estimator does, in fact. yield an excellent estimator of the Class

A parameters for small sample sizes for all parameter vectors in the parameter set of interest.




95

6. SUMMARY AND CONCLUSIONS

In this work, we have developed and examined the performance of various optimal and near-

optimal identification procedures for the Class A interference model.

We considered first the problem of basic batch estimation of the Class A parameters from an
independent sequence of Class A envelope samples. From this study, it was seen that the method-
of-moments estimator based on the fourth and sixth moments yielded strongly consistent and
asymptotically normal estimates of the parameters, but was highly inefficient due to the insensi-
tivity of the moments to changes in the parameter X. However, via an examination of the
Cramer-Rao Lower Bound, it was seen that a tremendous improvement in performance over the
method-of-moments estimator was possible if an asymptotically efficient estimator could be found.
Unfortunately, maximum likelihood estimation proved to be compu-~tionally unwieldy due
largely to the multiplicity of roots in the likelihood equation. However, by initiating Newton's
reot-finding method on the likelihood equation with the method-of-moments estimator, 4 pro-
cedure was obtained that combined the consistency and efficiency of the two approaches. Despite
its asymptotic optimality, this Moment/Likelihood procedure did not perform well for moderate
sample sizes because of the extremely high inefficiency of the moments estimator. However, by ini-
tiating likelihood search with the more efficient, physically-motivated Threshold-Comparison esti-
mator, a tatch estimator of the Class A parameters was obtained that yields good estimates of the

parameters for moderate sample sizes.

The problem of recursive identification of the Class A parameters was then addressed. The
starting point in the development of a global, recursive estimator of the parameters was the BDD
algorithm. This algorithm is physically motivated, easy to implement, and is a recursive version of
the Threshold-Comparison estimator, which was seen in the batch estimation problem to yield
accurate estimates of the parameters. In particular, this basic decision-directed algorithm is based
on an adaptive, Bayesian classification of each of a sequence of Class A envelope samples as an

impulsive sample or as a background sample. As each sample is so classified, recursive updates of
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the estimates of the second moment of the background component of the interference envelope den-
sity, the second moment of the impulsive component of the interference envelope density. and the
probability with which the impulsive component occurs, are readily obtained. From these esti-
mates, estimates of the parameters of the Class A model follow straightforwardly, since closed-
form expressions exist in terms of these quantities. Examination of the performance characteristics
of the algorithm revealed two inherent drawbacks of the algorithm, which adversely affect its per-
formance even locally. However, by imposing the necessary restrictions on the form of the initia-
tion vector for the algorithm and incorporating the appropriate modifications into its framework,
the ensuing difficulties associated with these two drawbacks can be eliminated. The result was a
global, recursive estimator of the Class A parameters that yields excellent estimates of the parame-

ters for all parameter vectors in the parameter set of interest.

The problem of efficient estimation of the Class A parameters for small sample sizes was then
considerad  Th- proposed estimator was based on the EM algorithm, a two-step iterative estimation
technique which was ideally suited for the Class A estimation problem since the observations could
be readily treated as "incomplete data." For the single-parameter estimation problem (A unknown,
K known), a closed-form expression fur the estimator was obtained. The ronvergence properties of
the EM algorithm as they pertain to the Class A estimation problem were also examined. Again,
for the single-parameter estimation problem, (4 unknown, K known), it was shown that the
sequence of estimates obtained via the EM algorithm converges. Moreover, it was shown that if the
limit point to which the sequence converges is an interior point of the set over which the optimiza-
tion is performed, then it must necessarily be a stationary point of the traditional likelihood func-
tion. The small-sample-size performance of the EM algorithm was also examined via simulation
(for both the single-parameter and two-parameter estimation problems). For each true parameter
vector. two EM algorithms were executed in parallel, each initiated with a different initiating vec-
tor. the pair of initiating vectors being fixed for each true parameter vector. For each initiating vec-
tor, the EM algorithm converged to a limit vector in the parameter set of interest. and the estimate

vector was then taken to be the limit vector that maximized the incomplete-data likelihood

B ——
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function. For each initiating vector and true parameter vector, the EM algorithm converged to the
limit vector within relatively few iterations (on the order of 10). Moreover. via an extensive simu-
lation study. it was seen that this likelihood-based scheme yields excellent estimates of the parame-
ters of the Class A model (in terms of attaining the Cramer-Rao Lower Bound) for small sample

sizes (on the order of 10°).

This study bas been devoted to the problem of obtaining optimal and near-optimal
identification procedures for the parameters of the Clas< A interference model. A thorough investi-
gation of this problem has been made. with the objective of obtaining theoretically optimal and
practically efficient estimation procedures for these parameters. The problem of efficient estimation
in both the batch and recursive frameworks has been addressed. It is anticipated that the results of
this study will find widespread application in the areas of digital communications, sonar, and radar

due to the common occurrence of impulsive channels in such systems.
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APPENDIX A. DERIVATION OF RESTRICTIONS ON BDD ALGORITHM

Let us now cetermine the source of the two flaws of the BDD algorithm given in Section 4.2.2.
Note that, in a given iteration of the algorithm. the only error that can be incurred is in the
decision-making process, and the decision-making process is based on a LRT that uses an estimate
of the true parameter vector in the LK to classify the given sample. Thus, by examining the effects
on the error probability in the classification process due to the mismatch introduced from a lack of
knowledge of the true parameter vector value, some insight can be gained into the source of the
two flaws of the BDD algorithm. In particular, for a comprehensive range of values of
(A K.09) €A  and (A.X. g'_z) € A", we can compute the probability of making an incorrect
classification when (A, &,gz) is used in the LRT to classify the given observation given that
(A.K.0%) is the true parameter vector. The expression for this probability of error can be easily

(a.x.d?

derived by noting from the definition of 7.~ £.2) given in Section 4.2.1 that this is simply the

probability of making an incorrect classification when the decision regions

2 2
(0. T‘f};i,"i' n, (1'0(;:" X2 ) are used. given that (4. K, °) is the true parameter vector. Let us

denote this probability of error by P,((A. XK. a?):(4.K.0%). (In the sequel, the parenthetical

arguments will be included only if necessary for clarity.) We then have that

P,(A.K.g):(A.K,0%)

2

* L4.8,0%
- _ ‘a
=eAf( 2Po(Z;ANK.02)d2 +(1—e A)fo pz:A. K.0Ddz
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After some manipulation. (A.1) yields the following expression for P,((A. K .g?):(A. K, &)
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Let Q3{(a.B &) :(a.B.§)€Aandloga€Z, logP € Z,log ¢ =0}. Given the above expression
for P,, we have computed, for each (A.X,0)€ Q. P,((A.K. aD:(A. k. 0D) for all

(A.X. gz) € . It is evident from (A.2) that the evaluation of these error probabilities requires

2
that To(ﬁ'&"l) first be evaluated for all (A.K.o°) € Q. Since f (z:A.K.c") is a strictly
monotone increasing function of z for each (4. X, g'_z) € A', this was easily done using a numeri-

cal search procedure. The results are tabulated in Table A.1. (All tables referenced in this appen-

a.x.o%

opt and (A.2),

dix can be found at the end of the appendix.) Using the tatalated values for 7
P((A.K. g®):(A. K, o?) was then computed for the aforementioned values of (4. X, a?) and
(A, K.o?). The computed error probabilities are tabulated in Tables (A .2)-(A.6). (A.7)-(A.11),
and (A.12)-(A.16). We will now use these error probabilities to explain the observed difficulties of

the BDD algorithm cited above.

Explanation of Observed Difficulties

We will now justify the observed difficulties of the BDD algorithm, and, in so doing, obtain
restrictions on the form of the initiation vector (A K, 6'02 ) for the algorithm. As stated in Sec-
tion 4.2.2, the observed difficulties of the algorithm are cited for the case when 5': is fixed so that

5: = o’ =1 for all n 2 0 and, thus, will be justified for this case.

Consider the tables for P,. Since I 4 X/A (see Eq. (2.6)), we see that for a given table, the
lines of constant [ correspond to diagonals along that table, with [ attaining a maximum value
of 1 when (A, K)=(10"10"%) and a minimum value of 10~ when (A.K)=(1.10""). Note
from tables (A.2)-(A.6) and (A.7)-(A.11) that for fixed A. P,((4. XK. a?) (A, K.c")) becomes

very large very rapidly with decreasing K for parameter vectors (4. X . @?) for which T is less
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than I'. Moreover, for values of the parameter vectors (A, X . gz) for which I 2 T, P, for these
parameter vectors is relatively small. Thus, we bave a so—called "diagonal effect,” wherein for
values of the parameter vectors (4., X, ?) for which [ < T, the probability of error incurred in
the decision-making process by using these vectors in the LRT when (4, X, 0'2) is the true parame-
ter vector is relatively large, whereas for values of the parameter vectors (4 ., K.gz) for which
L 2 T. the probability of error incurred is relatively small. Thus, for each (4. X, o). the "diago-
nal effect” divides the plane of A consisting of parameter vectors for which the third coordinate
has unity value into an upper-diagonal and a lower-diagonal region as defined by the line
corresponding to constant I'. To parameter vectore in the upper-diagonal region. we can associate
values of P, that are predominantly small, and to those in the lower-diagonal region, we can asso-

ciate values of P, that are predominantly large.

This phenomenon justifies the initial portion of the observation cited in (ii) of Section 4.2.2,
namely, that for initiation vectors (4 o, K . &2) for which T, 2 T, the frequency with which the
algorithm converges to the true parameter vector is relatively high, whereas for initiation vectors
(A, K, &02 ) for which T'y< T, the frequency with which the algorithm converges to the wrong
parameter vector is relatively high. We see then that the diagonal effect can be used advanta-

geously by always initiating the BDD algorithm with an initiation vector (A o K o 5’02 ) for which

(1 f'o either provides an accurate estimate of I', or, Iy provides an estimate of I' for which

T,>T.

M. -hat for each true parameter vector (A , K, 0°) the upper-diagonal and lower-diagonal regions
.. defined by the line of constant I have the aforementioned properties of
P(. K. 9'_2) :(A. K.0%)) associated with them if gz =0 and 0° = 1. The constraint given by
the hrst equality demands that the restriction given in (1) be accompanied by the additional

restriction that
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~ 2 . 3
(2) &, must provide an accurate estimate of o.

. ~2 . 1 s o . .
Given that o, accurately estimates o, we will, in addition, replace (4.8¢c) with an estimator of o’
. . ~2 . . . . .
consisting of an update equation for 0,. In so doing, we will obtain an estimate equation for o’

which yields an accurate estimate of o at each iteration of the algorithm.

The second constraint, namely a? = 1, does not impose any additional restrictions for the fol-

lowing reason: From the approximation given in Step (2’) of the MBDD algorithm (Section 4.3.1),

(a.xs.gﬁ)z

. . . N 2,
it can be seen that, via some minor approximations, the dependence of (‘rop, on g is essen-

tially linear for all (A, X, ¢?) € A. From (A.2), it then follows that Z,((4 ., K. %) : (A, K, o%))

2, .
. i.e., given that gz=a'2, the values for

depends only on the ratio of gz to O
P,((A.K.c®):(A. K.0P) are essentially invariant to changes in o for each true parameter vec-
tor (A, K, o). Consequently, since restriction (2) takes into account the fact that the properties

. 2 2 - . 2 .
for P, are valid only when " = ¢, no additional restriction on 0" need be imposed.

Note, in addition, from Tables (A.7)-(A.11) that for each true parameter vector (4. K, )
for which A = 1, there exists a set of vectors (4, X, gz) for which I > T but for which P, once
again becomes relatively large, namely, the set of vectors for which I is approximately on the
order of 107" or larger. The values for P, tabulated for these [ support the observation, cited in
(ii) of Section 4.2.2, that for values of A close to 1, the frequency with which the BDD algorithm
converges to the wrong parameter vector becomes relatively high for values of f‘o approximately on
the order of 107" or larger. Instead of translating this observation into a restriction on fo as was
done with the diagonal effect. we will see in the sequel that this observation more readily translates

into a restriction on A .

Consider the observations cited in (i) of Section 4.2.2. Suppose that we have an iteration n'’
for which the associated proportion of samples classified as impulsive exceeds the expected percent-
age (and for which all samples at iterations n € n’’ have been correctly classified). (In the sequel,

this will be referred to as a situation wherein there is a "disproportionate excess of impulses.") Let
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us see how this can cause the algorithm to behave poorly: Since the proportion of samples classified
as impulsive at iteration n’’ exceeds the expected percentage. it follows from (4.8a) that the esti-
mate of A at that iteration will exceed the true A. Now, if the estimate of X at iteration n’’ is
such that the estimate of I' ( which is defined to be the estimate of K divided by the estimate of
A ) at that iteration either exceeds or equals the true T', then the estimate vector at iteration n’’
will lie in the upper-diagonal region corresponding to the true parameter vector. Consequently, by
the "diagonal effect.” the probability of error incurred in the decision-making process at the next
iteration of the algorithm will tena to be relatively low, and thus, with relatively high probability.
the sample at iteration n’'+ 1 will be classified correctly. However, if the estimate of X at iteration
n'’ is such that the estimate of I is less than the true I', then the estimate vector at iteration n’’
will lie in the lower-diagonal region corresponding to the true parameter vector and. by the "diago-
nal effect,” the probability of error incurred at the next iteration of the algorithm will tend to be
relatively high. Now, from Table A.1, we see that if the estimate vector is such that the estimate
of A is greater than the true A and the estimate of I is less than the true I', then the optimum
threshold corresponding to the estimate vector will be less than the optimum threshold correspond-
ing to the true parameter vector. Given this and the relatively high probability of an incorrect
classification associated with the estimate vector lying in the lower-diagonal region. we have a
situation wherein a background sample can be incorrectly classified as an impulsive sample at the
next iteration of the algorithm. Since the estimate of A is directly proportional to the proportion
of samples that have been classified as impulsive (of course, within the boundary restrictions
imposed by A), an incorrect classification of a background sample as impulsive at iteration n’”'+ 1
will raise the estimate of A even further. Thus, via these successively increasing values for the
estimate of A, the estimate vector can potentially be "forced away” from the true parameter vec-
tor. We see then that a disproportionate excess of impulses at a given iteration of the algorithm can

have a detrimental effect on its performance.

Note that the likelihood with which the performance of the algorithm is adversely affected

increases with increasing values obtained for the estimate of A, given that the estimate of A
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exceeds the true value. This is accounted for as follows: Consider Tables (A.4)-(A.6) and (A.7)-
(A.11). In each table, note that for a fixed but arbitrary value of A, the portion of the lower-
diagonal region consisting of the parameter vectors for which the first coordinate is A is an inter-
val. and the length of this interval increases with increasing A. Thus, as the estimate of A4
increases. the length of the interval associated with this estimate increases. Since this interval
defines the set of parameter vectors under consideration for which the first coordinate is the esti-
mate of A and for which the ratio of the second coordinate to the first is less than the true I, it
follows that as the estimate of A increases, the likelihood that the estimate of I will be less than
the true I' increases. Given the ensuing detrimental effect on the behavior of the algorithm
(described in the previous paragraph) associated with the estimate of A being greater than the true
A and the estimate of I being less than the true I', it follows that the increased likelihood of the
estimate of I being less than the true I in turn increases the likelihood that the performance of the

algorithm will be adversely affected.

It was noted in (i) of Section 4.2.2 that the convergence of the BDD algorithm is sensitive to
the distribution of impulses in the initial stages of the algorithm. That a disproportionate excess of
impulses at a given iteration of the algorithm is more likely to affect its convergence if the iteration
occurs in the initial stages of the algorithm follows from the fact that the estimates of the update
parameters and, hence, the estimates of the model parameters, are more sensitive to changes in the
number of samples classified as impulsive in the initial stages of the algorithm. For example, sup-
pose that the true value of the parameter 4 is 1072 Since the corresponding true value for 7, is
9.95x10, suppose. in addition, that #,(100) = 9.95x10™>. Now, if the sample at the 101-st itera-
tion is classified as impulsive, then #,(101) will be 1.98x1072. However, if #,(2000) = 9.95x10™>
and the sample at the 2001-st iteration is classified as impulsive, then #,(2001) will be 1.04X10™>,
Thus, even though the proportions of samples classified as impulsive at the 100-th and 2000-th
iterations are the same (and are equal to the true value), an increase in the number of samples
classified as impulsive by one (resulting in a disproportionate excess of impulses) yields a larger

value for the estimate of 7, at the 101-st iteration, and hence, a larger value for the estimate of 4,
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than at the 2001-st iteration (A ,5, = 2.00X10~> whereas A 5001 = 1.05x1072). Since the estimate of
A associated with the 101-st iteration is larger than that corresponding to the 2001-st iteration
(and both exceed the true value), it follows from the observation cited in the first statement of the
previous paragraph that the performance of the algorithm is more likely to be adversely affected
by the estimate of A associated with the 101-st iteration. Via this example, we see then that a
disproportionate excess of impulse: at a given iteration of the algorithm is more likely to affect its

convergence if the iteration occurs in the initial stages of the algorithm.

It was also noted in (i) of Section 4.2.2 that a disproportionate excess of impulses will have a
significant effect on the convergence of the algorithm for values of 4 close to 1072, Thata dispro-
portionate excess of impulses is more likely to affect the convergence of the algorithm for smaller
values of A is best explained with an example: Suppose that the true value of the parameter A is
1072 and suppose that the first impulsive sample occurs at the second iteration of the algorithm.
Then, given that the samples have been classified correctly, there will be a disproportionate excess
of impulses at this second iteration. Furthermore, the minimum possible iteration value for which
there will not be a disproportionate excess of impulses is 101 (such would be the case if there are
no impulses for iteration values 3 € n €101 and all samples are classified correctly). Now if the
true value of the parameter A is 107" and the first impulsive sample occurs at the second iteration
of the algorithm, then again there will be a disproportionate excess of impulses at this second itera-
tion but the minimum possible iteration value thereafter for which there will not be a dispropor-
tionate excess of impulses is now 11. Thus, an iteration for which there is a disproportionate excess
of impulses has resulted in a greater number of ensuing iterations for which there is a dispropor-
tionate excess of impulses for the smaller value of A. Given the possible detrimental effect on the
performance of the algorithm associated with an iteration for which there is a disproportionate
excess of impulses (discussed above), it follows that an increased number of iterations for which
there is such an excess increases the likelihood that the algorithm will behave poorly. We see then
that a disproportionate excess of impulses at a given iteration of the algorithm is more likely to

affect its convergence for smaller values of A .
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Finally. let us justify the last observation cited in (i) of Section 4.2.2, namely, that for a fixed
value of the true parameter A, the likelihood that a disproportionate excess of impulses will affect
the convergence of the algorithm increases with increasing K: Consider Tables (A.2)-(A.6) and
(A.7)-(A.11). For each true parameter vector. let the "truncated lower-diagonal region" and "trun-
cated upper-diagonal region” denote the set of parameter vectors in the lower-diagonal region and
upper-diagonal region, respectively, for which the first coordinate exceeds the true A . Note that for
fixed value of the true parameter A and increasing value of the true parameter X, there is a
corresponding increase in the size of the truncated lower-diagonal region associated with the true
parameter vector and a decrease in the size of the truncated upper-diagonal region. Now, suppose
that we have an iteration for which there is a disproportionate excess of impulses. Then the esti-
mate of A at that iteration will exceed the true A and, consequently, the estimate vector at that
iteration will either lie in the truncated lower-diagonal region or in the truncated upper-diagonal
region corresponding to the true parameter vector. Since the size of the truncated lower-diagonal
region increases with increasing X, the probability that the estimate vector will lie in the truncated
lower-diagonal region increases with increasing X' . Moreover, the estimate vector is more likely to
lie in the truncated lower-diagonal region associated with the true parameter vector than in the
truncated upper-diagonal region since the size of the first region relative to the second increases
with increasing X . Given the detrimental effect on the performance of the algorithm (discussed
earlier) that results from the estimate of A being greater than the true A and the estimate of T
being less than the true I, it follows from the increased likelihood of the estimate vector lying in
the truncated lower-diagonal region (and decreased likelihood of it lying in the truncated upper-

diagonal region) that there will be an increased likelihood of the algorithm performing poorly.

For fixed A, the most pronounced effect on the algorithm'’s convergence is for X = 1072 since
the truncated lower-diagonal region associated with the true parameter vector is largest for this
value of X. Moreover, the truncated upper-diagonal region is an empty set. This suggests a means
for improving the performance of the algorithm somewhat for larger values of X, namely by

extending the upper-diagonal region (and, hence, the truncated upper-diagonal region) associated
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with the parameter vectors corresponding to these larger values of X. This can be done by consid-
ering a modified parameter set consising of the following parallelepiped:
{(A.XK.09):102<A4<1,10°<T <1.0%>0}. However, given that A’ is the parameter set
of practical interest for the estimation problem at hand. another means of improving the perform-
ance of the algorithm suggests itself by recalling that (a) a disproportionate excess of impulses
forces the estimate vector away from the true parameter vector through successively increasing
values in the estimate of A, and that (b) the performance of the algorithm is more likely to be
affected if the disproportionate excess of impulses occurs in the initial stages of the algorithm.
From these earlier observations, we see then that an improvement in performance is possible if, in
the initial stages of the algorithm, the estimate of A is fixed to its initial value “;o and only the
estimates of X and o are updated. In this manner, the divergence of the estimate of A from its
true value can be prevented, and this, in turn, should increase the frequency with which the algo-
rithm converges to the true parameter vector. To accommodate this modification of the BDD algo-

ritbm, the following restriction on A o must be imposed: Namely,

(3) A o must either provide an accurate estimate of A, or, A.o must provide an estimate of A for

which A, < A.

Suppose this was not the case, i.e., suppose that A o Wwere significantly larger than the true A. Now,
restrictions (1) and (2) on T, and &02 . respectively, guarantee that the initiation vector
(Ag. K4 &2) for the algorithm will lie in the upper-diagonal region corresponding to the true
parameter vector. Thus, the probability of error incurred in the decision-making process will be
relatively small initially. Consequently, with relatively high probability, the impulsive and back-
ground samples will be correctly classified and, eventually, this results in an estimate of X which
accurately approximates the true value. (The estimate of o? will always accurately approximate
the true value for the reasons discussed above.) Eventually, then. we have a situation where the
estimate of A is fixed at its initial value A o and the estimates of X and o accurately describe the

true values, i.e., the estimate vector of the true parameter vector lies in the lower-diagonal region
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corresponding to the trne parameter vector. Thus, the probability of error associated with this esti-
mate vector will be relatively high and this may adversely affect the estimate of X and/or tkLe esti-
mate of A (if the algorithm is at the stage where the estimate of 4 is once again being updated).
Given these ensuing adverse effects on the estimates of the parameters resulting from A o being

larger than the true A , we necessarily impose the restriction given in (3).

Recall our earlier observation that for parameter vectors (4, X, 0'2) for which A =1
(c°=1), P,((A.K.c%) (4. K.0%) becomes relatively large for parameter vectors (4. K.g°)
&2= 1) for which T is apprusimately on the order of 107" or larger. In particular, for the true
parameter vector (A.X.o%)=(1,107%1), the vectors (A.K.g?) for which A <107},
K = 1072, and g‘;z =1 fall in this category. Note that for these vectors the value of A is less than
A by an order of magnitude or more. Thus, as this example indicates, if the initiation vector for
the algorithm has a value for A o Which is less than the true A by an order of magnitude or more,
then it is possible that the probability of error incurred in the decision-making process will be rela-
tively large in the initial stages of the algorithm. Consequently, we replace condition (3) with the

more stringent condition that

3 A, must either provide an accurate estimate of A, or, A, must provide an estimate of A for
0 P 0 P

which A 0< A and not less by an order of magnitude or more.

Note that the region, defined jointly by conditions (1) and (3’), from which (/i'o . f‘o) can be
chosen consists of a trapezoid. Now, the BDD algorithm directly provides initial estimates for the
parameters A and K, not A and I'. Thus, it is necessary to translate restrictions (1) and (3") on T,
and /IO, respectively, into restrictions on K o and .;1'0. Given that f‘o is the ratio of K o 10 1;0.
restrictions (1) and (3’) do not yield a restriction for K o in terms of a simple inequality, as they
did for T o and A o- Consequently, instead of attempting to obtain estimates A o K o) such that the
associated estimates (A 0 f'o) lie in the aforementioned trapezoid, we will instead attempt to obtain

estimates (A 4, K ;) for which A , satisfies (3') and for which K, satisfies the following restriction:
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(1) K, must either provide an accurate estimate of X, or, K o must provide an estimate of X for

which 1?0> K,

i.e., the set of vectors from which the estimates (A o K o) can be chosen is simply the largest rectan-
gle contained in the aforementioned trapezoid. Note that restriction (1°) on K o is satisfied if we set
K o to the maximum allowable value for the parameter K. Note, in addition, from the tables given
for P,, that for a fixed value of 4 <A.P, (V: Q. ¢ gz) (ALK, 0'2)) decreases with decreasing
values of X > K. Thus, to use this property of P, more advantageously. we will modify restrici-

tion (1) as follows :

(1) K, must either provide an accurate estimate of X, or, K, must provide an estimate of X for

which X o > K and not greater by two orders of magnitude or more.

In summary then, we see from (1°°), (2), and (3’) and the above discussion that the following

restrictions (on (4 ¢. K 5. &2)) and modifications must be imposed:

~ -~

(R1) A, must either provide an accurate estimate of A, or, A, must provide an estimate of A

for which A 0< A and not less by an order of magnitude or more.

(R2) K o must either provide an accurate estimate of X, or, K, must provide an estimate of XK

for which X 0> K and not greater by two orders of magnitude or more.
~2 . .
(R3) 0, must provide an accurate estimate of o’

(M1) The estimator of o given by Eq. (4.8c) must be replaced by an estimator of o? consisting

. ~2
of an update equation for 0.

(M2) The estimate of A must be fixed to its initial value A o in the initial stages of the algorithm,

with only the estimates of X and o’ being updated.
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Table A1, 745 FOR (4.K.0) € Q
K | 107 1072 1074 1075 107°
A
107 2.1575 1.0235 0.3698 0.1269 42914 x 1072
10~ 0.7955 0.3017 0.1071 3.7134x 1072 | 1.2686 x 107>
1 0.2081 | 8.1435x 1072 | 2.9890 X 10~ | 1.0600 x 102 | 3.6796 x 10~
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Table A.2. P,((A.XK.09:(A.K.0%) FOR (A.K.c®) € Q@ AND

(A.X.09)=(10210"%1)

K 1072 1072 10~ 1073 107°
A
1072 || 9.6367x10™* | 0.1220 | 0.7531 | 0.9587 | 0.9864
107! 0.2794 0.8253 | 0.9676 | 0.9873 | 0.9897
1 0.9079 0.9770 | 0.9883 | 0.9898 | 0.9900

Table A3. P,((A.K.a?):(A.K.,0%) FOR (A.K.o?) € Q AND
(A.K.0)=(10210"1)

K 1072 1073 10~ 1073 107°
A
-2 —d4 —
10 4.9496x107™* | 1.2340x10™* | 0.2199 | 0.8294 | 0.9702
107t 1.0081x107° | 0.3637 0.8726 | 0.9751 | 0.9883
1 0.6148 0.9204 0.9804 | 0.9888 | 0.9899

Table A4. P,((A.K.0%):(A.K.0%) FOR (A.X.o?) € @ AND
(A.K.0%)=(10210"%1)

K 1072 107 107* 1075 107
4
10 || 4.5580x10™* | 1.0445x10™* | 1.4692x10™° | 0.1947 | 0.8220
107" 6.3223x107° | 1.0964x10~* | 0.3106 0.8613 | 0.9741
1 1.2462x1072 | 0.5067 0.9046 0.9789 | 0.9887
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Table A.5. P,((A.K.c?):(A.K.0®) FOR (A.K.0%) € & AND
(4.5.0%)=(1072107%,1)

X 1072 1073 10~* 1073 10°°
ey
1072 4.5188x10™* | 1.0353x107* | 1.3580x107> | 1.6986x107° | 0.1567
107t 6.2667x107° | 9.0409x107° | 1.1281x107° | 0.2490 0.8427
1 4.3031x107° | 1.2968x10™> | 0.4048 0.8847 0.9767
Table A.6. P,((A.K.c®);(A.K.0?) FOR (A.K.g%) € Q AND
(A.K.09)=(10"210"% 1)
K 1072 1073 10~* 1073 10°°
A
1072 4.5148x10™* | 1.0344x10™* | 1.3568%107° | 1.5980x107% | 1.9273x107
107} 6.2612x107° | 9.0329x107% | 1.1392x107® | 1.1521x10™® | 0.1980
1 42992x107° | 6.5826x1077 | 1.3045x107¢ | 0.3218 0.8647
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Table A.7. P,((A.K.0?):(A.K.0?%) FOR (4.K.o%) € & AND
(A.K.0)=(10"107%1)

-2 -3 —4 -5

K 10 10 10 10 10

107° 3.7025x107% | 1.0023x1072 | 0.2024 | 0.7581 | 0.8867

! 7.0416x107° | 0.3333 0.7976 | 0.8912 | 0.9032

1 0.5623 0.8412 0.8960 | 0.9037 | 0.9047

Table A8. P,((A.K.0%):(A.K.0%) FOR (A.X.oc®) € © AND
(A.xk.0)=(10"11071)

KX 1072 10~° 10~ 10~° 10

1072 3.4883x107% | 9.3140x1072 | 1.2729x10™° | 0.1781 | 0.7513

-t 5.7418%10™° | 9.4046x107™* | 0.2840 0.7872 | 0.8903

1 1.1790x107% | 0.4632 0.8268 0.8946 | 0.9036

Table A9. P,((A.K.c"):(A.K.c%) FOR (A.K.g%) € & AND
(A.x.0%)=(10"10""1)

(8

1072 1073 107~ 1073 10

>

-2 3.4662x1072 | 9.2430x107° | 1.2618x10™° | 1.4951x10™* | 0.1432

107! 5.6972x107> | 8.4180x10™* | 1.1581x10™* | 0.2276 0.7702

4.0151x10~* | 1.2462x107* | 0.3700 0.8086 0.8927
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Table A.10. P,((A.K.0%):(A.K.0%) FOR (A.K.0®) € © AND
(4.K.05)=(10"1,107% 1)

K 1072 1073 107* 107° 107°
A
-2 —2 -3 -3 — -5
10 3.4640%10 9.2359%10 1.2608x10 1.4929%10 1.7099%10
10~ 5.6927x107° | 8.4112x10™* | 1.0646x10™* | 1.3724x107° | 0.1810
1 4.0118x107% | 6.1526x107° | 1.2744x10™* | 0.2941 0.7902
Table A.11. P,((A.K.0%):(A.K,0%) FOR (A.K.o?) € @ AND
(4.K,09)=(10"1,10"%1)
| -2 -3 —4 -5 -
K 10 10 10 10 10
A
10~ 3.4637x1072 | 9.2352x107> | 1.2607x10™> | 1.4928x10~* | 1.7088x10™°
10~ 5.6922x107° | 8.4106x10™" | 1.0645x10™ | 1.2795x10™° | 1.5862x107°
1 4.0115x10~* | 6.1521x107° | 8.2904x107° | 1.2966x107° | 0.2336
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Table A.12. P,((A.X.¢)):(A.K.0%) FOR (A.X.g?) € Q@ AND
4.x.¢)=(1,10"21)

X 1072 1073 10~ 1073 107
A
1072 0.5918 0.3365 6.2612x1072 | 8.0124x1072 | 0.3063
107! 0.2370 4.2532x1072 | 0.1210 0.3207 0.3620
1 2.5268x1072 | 0.1915 0.3366 0.3638 0.3674
Table A.13. P,((A.K.0?):(A.K.0") FOR (A.K.g%) € @ AND
(A.K.09)=(1.10"1)
X 1072 1072 10~* 10~3 10°°
A
1072 0.5915 0.3361 6.2539x107% | 7.7522x10* | 5.9115%x107°
107} 0.2367 4.2445x107% | 5.5414x107° | 9.3193x107% | 0.3132
1 2.0615x107% | 3.6880x10™° | 0.1509 0.3288 0.3629
Table A.14. P,((A.K.0?):(A.K.0%) FOR (A.X.g>) € @ AND
4.K.09)=(1.10"1)
K 1072 10~° 10~ 10~° 10°¢
A
1072 0.5914 0.3361 625311072 | 7.7513x107° | 8.9218x107*
107" 0.2367 4.2440x1072 | 5.5370x107° | 6.6852x107* | 7.3654x1072
1 2.0613x107% | 3.2060x10> | 4.8144x10~* | 0.1196 0.3213
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Table A.15. P,((A.K.c%);(A.K.0%)) FOR (4.K.g%) € & AND
(4.K,0)=(1,107,1)

X 1072 10~ 10~ 1073 107%
A
10~ 0.5914 0.3361 6.2531x1072 | 7.7512x107° | 8.9216x10~*
10~ 0.2367 4.2440%1072 | 5.5369x107° | 6.6813x107™* | 7.8054x1073
1 2.0613%1072 | 3.2060x107° | 4.3299x107™* | 5.9325x10™° | 9.4999x107°

Table A.16. P,((A.K.¢%):(A.K.0%)) FOR (4.K.g%) € & AND
(A.K.0%)=(1,10"%1)

K 1072 1073 10~* 1073 107
A
10” 0.5914 0.3361 6.2531x1072 | 7.7512x10"° | 8.9216x10™*
107} 0.2367 4.2440%1072 | 5.5369x107° | 6.6813x107* | 7.8017x107°
1 2.0613x1072 | 3.2060x10~° | 4.3299x10™* | 5.4477x10™° | 7.0491x107°
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APPENDIX B. EXPRESSIONS FOR THE COEFFICIENTS OF EQ. (5.28)

Letaandg;, (G =1...

and

Then,

n.j=1,2,..) be defined as in Section 5.3. Futhermore, let

ﬁlé 2(1 +2i2)ai1 .

i=1

n © g
B,AY 1+2)Y —— .
i=1 y=41

n
B;4 Zzizail ,
i=1
n -] a.
B.A X Zziz ?

. 2
=ty (1)

a;,
G-1)

Bsé Z Zziz

i=1)=2

c,=Bin*—B,B,n(Bs+n)+Bn(Bs+n) .

ca=(—B,B,n> =B, BsBn —ByByan)

+(2B38,n =B, Bn +Bin +2B,an)Bs+n)

—(BynXBs+n) ,

cy=(Bn*+28,8,n°—B,B,n° +28,an”)

+(B2B,n +BZByn —B B3 Bin — B Byan +2B8,B,an +B,a°n)
+(=B,n°=3B,Bsn +28,B,n =B,an)Bs+n)
+(n*+Byn =B nXBs+n )

c4=(—23233n2—232532n +2B,B,B8,n —28,B;an)

+(2B3n%—B8,n*=38,B8,n +282n +82n —B,an +2B,an)Bs+n)

and

cs=(Byn*—28,8,n2+282n" +28,an?)
+(Bfﬁ3n —ZBlﬁ:n +B:n —28,Byan +2332an +33a2n) .
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